Skip to main content
Log in

Rigidity of groups of circle diffeomorphisms and teichmüller spaces

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We consider deformations of a group of circle diffeomorphisms with Hölder continuous derivative in the framework of quasiconformal Teichmüller theory and showcertain rigidity under conjugation by symmetric homeomorphisms of the circle. As an application, we give a condition for such a diffeomorphism group to be conjugate to a Möbius group by a diffeomorphism of the same regularity. The strategy is to find a fixed point of the group which acts isometrically on the integrable Teichmüller space with the Weil–Petersson metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, NJ, 1966.

    MATH  Google Scholar 

  2. L. Ahlfors and G. Weill, A uniqueness theorem for Beltrami equations, Proc. Amer. Math. Soc. 13 (1962), 975–978.

    Article  MathSciNet  Google Scholar 

  3. K. Astala and M. Zinsmeister, Teichmüller spaces and BMOA, Math. Ann. 289 (1991), 613–625.

    Article  MathSciNet  Google Scholar 

  4. W. Ballmann, Lectures on Spaces of Nonpositive Curvature, Birkhäuser, Basel, 1995.

    Book  Google Scholar 

  5. J. Becker, Conformal mappings with quasiconformal extensions, in Aspects of Contemporary Complex Analysis, Academic Press, New York, 1980, pp. 37–77.

    Google Scholar 

  6. J. Becker and C. Pommerenke, Ü ber die quasikonforme Fortsetzung schlichter Funktionen, Math. Z. 161 (1978), 69–80.

    Article  MathSciNet  Google Scholar 

  7. L. Bers, A non-standard integral equation with applications to quasiconformal mappings, Acta Math. 116 (1966), 113–134.

    Article  MathSciNet  Google Scholar 

  8. L. Bers, Fiber spaces over Teichmüller spaces, Acta Math. 130 (1973), 89–126.

    Article  MathSciNet  Google Scholar 

  9. M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer, Berlin, 1999.

    Book  Google Scholar 

  10. L. Carleson, On mappings, conformal at the boundary, J. Analyse Math. 19 (1967), 1–13.

    Article  MathSciNet  Google Scholar 

  11. G. Cui, Integrably asymptotic affine homeomorphisms of the circle and Teichmüller spaces, Sci. China Ser. A 43 (2000), 267–279.

    Article  MathSciNet  Google Scholar 

  12. A. Douady and C. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986), 23–48.

    Article  MathSciNet  Google Scholar 

  13. R. Fehlmann, Ü ber extremale quasikonforme Abbildungen, Comment. Math. Helv. 56 (1981), 558–580.

    Article  MathSciNet  Google Scholar 

  14. F. Gardiner and D. Sullivan, Symmetric structure on a closed curve, Amer. J.Math. 114 (1992), 683–736.

    Article  MathSciNet  Google Scholar 

  15. É. Ghys, Rigidité différentiable des groupes fuchsiens, Inst. Hautes Études Sci. Publ. Math. 78 (1994), 163–185.

    Article  Google Scholar 

  16. H. Guo, Integrable Teichmüller spaces, Sci. China Ser. A 43 (2000), 47–58.

    Article  MathSciNet  Google Scholar 

  17. S. Hurder and A. Katok, Differentiability, rigidity and Godbillon–Vey classes for Anosov flows, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 5–61.

    Article  MathSciNet  Google Scholar 

  18. I. Kra, Automorphic Forms and Kleinian Groups, W. A. Benjamin, Reading, MA, 1972.

    MATH  Google Scholar 

  19. S. Lang, Fundamentals of Differential Geometry, Springer, Berlin, 1999.

    Book  Google Scholar 

  20. O. Lehto, Univalent Functions and Teichmüller Spaces, Springer, Berlin, 1986.

    MATH  Google Scholar 

  21. V. Markovic, Quasisymmetric groups, J. Amer.Math. Soc. 19 (2006), 673–715.

    Article  MathSciNet  Google Scholar 

  22. K. Matsuzaki, The action of elliptic modular transformations on asymptotic Teichmüller spaces, in Teichmüller Theory and Moduli Problem, Ramanujan Mathematical Society, Mysore, 2010, pp. 481–488.

    MATH  Google Scholar 

  23. K. Matsuzaki, Certain integrability of quasisymmetric automorphisms of the circle, Comput. Methods Funct. Theory 14 (2014), 487–503.

    Article  MathSciNet  Google Scholar 

  24. K. Matsuzaki, The universal Teichmüller space and diffeomorphisms of the circle with Hölder continuous derivatives, in Handbook of Group Actions. Vol. I, International Press, Somerville, MA, 2015, pp. 333–372.

    Google Scholar 

  25. K. Matsuzaki, Uniform convexity, normal structure and the fixed point property of metric spaces, Topology Appl. 196 (2015), 684–695.

    Article  MathSciNet  Google Scholar 

  26. K. Matsuzaki, Circle diffeomorphisms, rigidity of symmetric conjugation and affine foliation of the universal Teichmüller space, in Geometry, Dynamics, and Foliations 2013, Mathematical Society of Japan, Tokyo, 2017, pp. 145–180.

    MATH  Google Scholar 

  27. K. Matsuzaki, The Teichmüller space of group invariant symmetric structures on the circle, Ann. Acad. Sci. Fenn. Math. 42 (2017), 535–550.

    Article  MathSciNet  Google Scholar 

  28. K. Matsuzaki, Teichmüller space of circle diffeomorphisms with Hölder continuous derivatives, Rev. Mat. Iberoam., DOI: 10.4171/rmi/1169.

  29. K. Matsuzaki, Injectivity of the quotient Bers embedding of Teichmüller spaces, Ann. Acad. Sci. Fenn. Math. 44 (2019), 657–679.

    Article  MathSciNet  Google Scholar 

  30. S. Nag, The Complex Analytic Theory of Teichmüller Spaces, John Wiley & Sons, NY, 1988.

    Google Scholar 

  31. A. Navas, On uniformly quasisymmetric groups of circle diffeomorphisms, Ann.Acad. Sci. Fenn. Math. 31 (2006), 437–462.

    MathSciNet  MATH  Google Scholar 

  32. C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, Berlin, 1992.

    Book  Google Scholar 

  33. Y. Shen, Weil–Petersson Teichmüller space, Amer. J.Math. 140 (2018), 1041–1074.

    Article  MathSciNet  Google Scholar 

  34. L. Takhtajan and L. Teo, Weil–Petersson metric on the universal Teichmüller space, Mem. Amer. Math. Soc. 183 (2006), No. 861.

  35. S. Tang, Some characterizations of the integrable Teichmüller space, Sci. China Ser. A 56 (2013), 541–551.

    Article  Google Scholar 

  36. M. Yanagishita, Introduction of a complex structure on the p-integrable Teichmüller space, Ann. Acad. Sci. Fenn. 39 (2014), 947–971.

    Article  MathSciNet  Google Scholar 

  37. M. Yanagishita, Smoothness and strongly pseudoconvexity of p-Weil–Petrsson metric, Ann. Acad. Sci. Fenn. Math. 44 (2019), 15–28.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The author would like to thank the referee for his/her careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Matsuzaki.

Additional information

This work was supported by JSPS KAKENHI 25287021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuzaki, K. Rigidity of groups of circle diffeomorphisms and teichmüller spaces. JAMA 140, 511–548 (2020). https://doi.org/10.1007/s11854-020-0095-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-020-0095-6

Navigation