Skip to main content
Log in

lp-norms of Fourier coefficients of powers of a Blaschke factor

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We determine the asymptotic behavior of the lp-norms of the sequence of Taylor coefficients of bn, where \(\begin{array}{*{20}{c}} {b(z) = \frac{{z - \lambda }}{{1 - \lambda z}},}&{\left| \lambda \right| < 1,} \end{array}\) is an automorphism of the unit disk, p ∈ [1,∞], and n is large. It is known that in the parameter range p ∈ [1, 2] a sharp upper bound \({\left\| {{b^n}} \right\|_{l_p^A}} \leqslant {c_p}{n^{\tfrac{{2 - p}}{{2p}}}}\) holds. In this article we find that this estimate is valid even when p ∈ [1, 4). We prove that \({\left\| {{b^n}} \right\|_{l_4^A}} \leqslant {c_4}{\left( {\frac{{\log n}}{n}} \right)^{\tfrac{1}{4}}}\) and for p ∈ (4,∞] that \({\left\| {{b^n}} \right\|_{l_p^A}} \leqslant {c_p}{n^{\tfrac{{1 - p}}{{3p}}}}.\) The upper bounds are shown to be asymptotically sharp as n tends to ∞. As a direct application we prove the sharpness of existing upper estimates on analytic capacities in Beurling–Sobolev spaces. Our investigation is also motivated by a question of J. J. Schäffer about optimal estimates for norms of inverse matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Andersson, Turán’s problem 10 revisited, preprint, arXiv:math/0609271[math.NT].

  2. J. Andersson, On some power sum problems of Turàn and Erdő;s, Acta Math. Hungar. 70 (1996), 305–316.

    Article  MathSciNet  Google Scholar 

  3. B. M. Baishanski and J. Hlavacek, An asymptotic formula for the sequence ‖exp ind(t)‖A, ArXiv: 0805.1699[math.CV].

  4. A. Beurling and H. Helson, Fourier–Stieltjes transforms with bounded powers, Math. Scand. 1 (1953), 120–126.

    Article  MathSciNet  Google Scholar 

  5. M. Y. Blyudze and S. M. Shimorin, Estimates of the norms of powers of functions in certain Banach spaces, J. Math. Sci. 80 (1996), 1880–1891.

    Article  MathSciNet  Google Scholar 

  6. N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals, Holt, Rinehart, and Winston, New York, 1975.

    MATH  Google Scholar 

  7. V. A. Borovikov, Uniform Stationary Phase Method, Institute of Engineering & Technology, London, 1994.

    MATH  Google Scholar 

  8. C. Chester, B. Friedman and F. Ursell, An extension of the method of steepest descents, Math. Proc. Cambridge Philos. Soc. 53 (1957), 599–611.

    Article  MathSciNet  Google Scholar 

  9. E. Gluskin, M. Meyer and A. Pajor, Zeros of analytic functions and norms of inverse matrices, Israel J. Math. 87 (1994), 225–242.

    Article  MathSciNet  Google Scholar 

  10. J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.

    MATH  Google Scholar 

  11. D. Girard, The behavior of the norm of an automorphism of the unit disk, Pacific J. Math. 47 (1973), 443–456.

    Article  MathSciNet  Google Scholar 

  12. J.-P. Kahane, Sur certaines classes de séries de Fourier absolument convergentes, J.Math. Pure Appl. 35 (1956), 249–259.

    MATH  Google Scholar 

  13. Z. L. Leibenson, On the ring of functions with absolutely convergent Fourier series, Uspekhi Mat. Nauk. 9 (1954), 3(61), 157–162.

    MathSciNet  Google Scholar 

  14. H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, American Mathematical Society, Providence, RI, 1994.

    Book  Google Scholar 

  15. N. Nikolski, Condition numbers of large matrices and analytic capacities, St. Petersburg Math. J. 17 (2006), 641–682.

    Article  MathSciNet  Google Scholar 

  16. N. Nikolski, Operators, Function, and Systems: An Easy Reading, American Mathematical Society, Providence, RI, 2002.

    MATH  Google Scholar 

  17. H. Queffelec, Sur un théor`eme de Gluskin–Meyer–Pajor, C. R. Acad. Sci. Paris Sér. 1 Math. 317 (1993), 155–158.

    MATH  Google Scholar 

  18. W. Rudin, Fourier Analysis on Groups, Interscience, New York, 1962.

    MATH  Google Scholar 

  19. J. J. Schäffer, Norms and determinants of linear mappings, Math. Zentral. 118 (1970), 331–339.

    Article  MathSciNet  Google Scholar 

  20. O. Szehr and R. Zarouf, On the asymptotic behavior of Jacobi polynomials with varying parameters, ArXiv: 1605.02509[math.CA].

  21. O. Szehr and R. Zarouf A constructive approach to Schäffer’s conjecture, forthcoming.

  22. P. Turán, On a New Method of Analysis and its Applications, Wiley-Interscience, NY, 1984.

    MATH  Google Scholar 

  23. R. Wong, Asymptotic Approximations of Integrals, Elsevier, Amsterdam, 1989.

    MATH  Google Scholar 

  24. A. Zygmund, Trigonometric Series, Vol. 1, Cambridge University Press, Cambridge, 1956.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Zarouf.

Additional information

The work is supported by Russian Science Foundation grant 14-41-00010.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szehr, O., Zarouf, R. lp-norms of Fourier coefficients of powers of a Blaschke factor. JAMA 140, 1–30 (2020). https://doi.org/10.1007/s11854-020-0090-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-020-0090-y

Navigation