Skip to main content
Log in

Global estimates for generalized Forchheimer flows of slightly compressible fluids

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

This paper is focused on the generalized Forchheimer flows of slightly compressible fluids in porous media. They are reformulated as a degenerate parabolic equation for the pressure. The initial boundary value problem is studied with time-dependent Dirichlet boundary data. The estimates up to the boundary and for all time are derived for the L-norm of the pressure, its gradient and time derivative. Large-time estimates are established to be independent of the initial data. Particularly, thanks to the special structure of the pressure’s nonlinear equation, the global gradient estimates are obtained in a relatively simple way, avoiding complicated calculations and a prior requirement of Hölder estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Aulisa, L. Bloshanskaya, L. Hoang, and A. Ibragimov, Analysis of generalized Forchheimer flows of compressible fluids in porous media, J. Math. Phys. 50 103102 (2009).

    Google Scholar 

  2. J. Bear, Dynamics of Fluids in Porous Media, Dover Publications, 1988. Reprint of the American Elsevier Publishing Company, Inc., New York, 1972 edition.

    MATH  Google Scholar 

  3. H. Darcy, Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris, 1856.

    Google Scholar 

  4. E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.

    Book  MATH  Google Scholar 

  5. L. Dung, Ultimately uniform boundedness of solutions and gradients for degenerate parabolic systems, Nonlinear Anal. 39(2000), 157–171.

    Google Scholar 

  6. J. Dupuit, Mouvement de l’eau a travers le terrains permeables, C. R. Hebd. Seances Acad. Sci. 45 (1857), 92–96.

    Google Scholar 

  7. P. Forchheimer, Wasserbewegung durch Boden, Zeit. Ver. Deut. Ing. 45 (1901), 1781–1788.

    Google Scholar 

  8. P. Forchheimer, Hydraulik, 3rd edition, Leipzig, Berlin, B. G. Teubner. 1930.

    MATH  Google Scholar 

  9. L. Hoang and A. Ibragimov, Structural stability of generalized Forchheimer equations for compressible fluids in porous media, Nonlinearity 24 (2011), 1–41.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Hoang and A. Ibragimov, Qualitative study of generalized Forchheimer flows with the flux boundary condition, Adv. Differential Equations 17 (2012), 511–556.

    MathSciNet  MATH  Google Scholar 

  11. L. Hoang, A. Ibragimov, T. Kieu, and Z. Sobol, Stability of solutions to generalized Forchheimer equations of any degree, J. Math. Sci. 210 (2015), 476–544.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Hoang and T. Kieu, Interior estimates for generalized Forchheimer flows of slightly compressible fluids, Adv. Nonlinear Stud. 17 (2017), 739–768.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. T. Hoang, T. T. Kieu, and T. V. Phan, Properties of generalized Forchheimer flows in porous media, J. Math. Sci. 202 (2014), 259–332.

    Article  MathSciNet  MATH  Google Scholar 

  14. O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968.

    Book  Google Scholar 

  15. G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co. Inc., River Edge, NJ, 1996.

    Book  MATH  Google Scholar 

  16. M. Muskat, The Flow of Homogeneous Fluids through Porous Media, McGraw-Hill Book Company, Inc., 1937.

    MATH  Google Scholar 

  17. D. A. Nield and A. Bejan, Convection in Porous Media, fourth edition, Springer-Verlag, New York, 2013.

    Book  MATH  Google Scholar 

  18. F. Ragnedda, S. Vernier Piro, and V. Vespri, Asymptotic time behaviour for non-autonomous degenerate parabolic problems with forcing term, Nonlinear Anal. 71 (2009), e2316–e2321.

    Google Scholar 

  19. F. Ragnedda, S. Vernier Piro, and V. Vespri, Large time behaviour of solutions to a class of non-autonomous, degenerate parabolic equations, Math. Ann. 348 (2010), 779–795.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002.

    Book  MATH  Google Scholar 

  21. B. Straughan, Stability and Wave Motion in Porous Media, Springer, New York, 2008.

    MATH  Google Scholar 

  22. M. D. Surnachëv, On improved estimates for parabolic equations with double degeneration, Proc. Steklov Inst. Math. 278 (2012), 241–250.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, second edition, Springer-Verlag, New York, 1997.

    Book  MATH  Google Scholar 

  24. J. L. Vázquez, Smoothing and decay estimates for nonlinear diffusion equations, Oxford University Press, Oxford, 2006.

    Book  MATH  Google Scholar 

  25. J. L. Vázquez, The Porous Medium Equation, The Clarendon Press Oxford University Press, Oxford, 2007.

    MATH  Google Scholar 

  26. J. C. Ward. Turbulent flow in porous media, J. Hydraulics Division 90 (1964), 1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luan Hoang.

Additional information

Dedicated to Professor Duong Minh Duc with gratitude

Supported by NSF grant DMS-1412796

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, L., Kieu, T. Global estimates for generalized Forchheimer flows of slightly compressible fluids. JAMA 137, 1–55 (2019). https://doi.org/10.1007/s11854-018-0064-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0064-5

Navigation