Skip to main content
Log in

Large dynamics of Yang–Mills theory: mean dimension formula

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study the Yang–Mills anti-self-dual (ASD) equation over the cylinder as a non-linear evolution equation. We consider a dynamical system consisting of bounded orbits of this evolution equation. This system contains many chaotic orbits, and moreover becomes an infinite dimensional and infinite entropy system. We study the mean dimension of this huge dynamical system. Mean dimension is a topological invariant of dynamical systems introduced by Gromov. We prove the exact formula of the mean dimension by developing a new technique based on the metric mean dimension theory of Lindenstrauss–Weiss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. R. Soc. Lond. A. 362 (1978), 425–461.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. F. P. Da Costa, Deux exemples sur la dimension moyenne d’un espace de courbes de Brody, Ann. Inst. Fourier 63(2013), 23–2237.

    MathSciNet  MATH  Google Scholar 

  3. S. K. Donaldson, The approximation of instantons, Geom. Funct. Anal. 3 (1993), 179–200.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. K. Donaldson, Floer Homology Groups in Yang-Mills Theory, with the assistance of M. Furuta and D. Kotschick, Cambridge University Press, Cambridge, 2002.

    Book  MATH  Google Scholar 

  5. S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-Manifolds, Oxford University Press, New York, 1990.

    MATH  Google Scholar 

  6. M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Springer, London, 2011.

    MATH  Google Scholar 

  7. G. A. Elliott and Z. Niu, The C*-algebra of a minimal homeomorphism of zero mean dimension, arXiv:1406.2382.

  8. A. Floer, An instanton-invariant for 3-manifolds, Comm. Math. Phys. 118 (1988), 215–240.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. S. Freed and K. K. Uhlenbeck, Instantons and Four-Manifolds, second edition, Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  10. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.

    MATH  Google Scholar 

  11. M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps: I, Math. Phys. Anal. Geom. 2 (1999), 323–415.

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Gutman, Mean dimension and Jaworski-type theorems, Proc. London Math. Soc. 111 (2015), 831–850.

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Gutman, Dynamical embedding in cubical shifts and the topological Rokhlin and small boundary properties, Ergodic Theory Dynam. Systems 37 (2017), 512–538.

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Gutman and M. Tsukamoto, Mean dimension and a sharp embedding theorem: extensions of aperiodic subshifts, Ergodic Theory Dynam. Systems 34 (2014), 1888–1896.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Jaworski, Ph.D. Thesis, University of Maryland, 1974.

  16. H. Li and B. Liang, Mean dimension, mean rank, and von Neumann-Lück rank, J. Reine Agnew. Math. (2015), DOI 10.1515/crelle-2015-0046.

    Google Scholar 

  17. E. Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math. 89 (1999), 227–262.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Lindenstrauss and M. Tsukamoto, Mean dimension and embedding problem: an example, Israel J. Math. 199 (2014), 573–584.

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J. Math. 115 (2000), 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Matsuo and M. Tsukamoto, Instanton approximation, periodic ASD connections, and mean dimension, J. Funct. Anal. 260 (2011), 1369–1427.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Matsuo and M. Tsukamoto, Brody curves and mean dimension, J. Amer. Math. Soc. 28 (2015), 159–182.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Matsuo and M. Tsukamoto, Local mean dimension of ASD moduli spaces over the cylinder, Israel J. Math 207 (2015), 793–834.

    Article  MathSciNet  MATH  Google Scholar 

  23. C. H. Taubes, Self-dual Yang–Mills connections on non-self-dual 4-manifolds, J. Differential Geom. 17 (1982), 139–170.

    Article  MathSciNet  MATH  Google Scholar 

  24. C. H. Taubes, Path-connected Yang-Mills moduli spaces, J. Differential Geom. 19 (1984), 337–392.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Tsukamoto, Gluing an infinite number of instantons, Nagoya Math. J. 188 (2007), 107–131.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Tsukamoto, Moduli space of Brody curves, energy and mean dimension, Nagoya Math. J. 192 (2008), 27–58.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Tsukamoto, Gauge theory on infinite connected sum and mean dimension, Math. Phys. Anal. Geom. 12 (2009), 325–380.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Tsukamoto, Remark on energy density of Brody curves, Proc. Japan Acad. Ser. A 88 (2012), 127–131.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Tsukamoto, Sharp lower bound on the curvatures of ASD connections over the cylinder, J. Math. Soc. Japan 66 (2014), 951–956.

    Article  MathSciNet  MATH  Google Scholar 

  30. K. K. Uhlenbeck, Connections with Lp bounds on curvature, Commun. Math. Phys. 83 (1982), 31–42.

    Article  MATH  Google Scholar 

  31. K. Wehrheim, Uhlenbeck Compactness, European Mathematical Society, Zürich, 2004.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Tsukamoto.

Additional information

This paper was supported by Grant-in-Aid for Young Scientists (B) 25870334 from JSPS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukamoto, M. Large dynamics of Yang–Mills theory: mean dimension formula. JAMA 134, 455–499 (2018). https://doi.org/10.1007/s11854-018-0014-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0014-2

Navigation