Skip to main content

Advertisement

Log in

Using a water index approach to mapping periodically inundated saltmarsh land-cover vegetation and eco-zonation using multi-temporal Landsat 8 imagery

  • Published:
Journal of Coastal Conservation Aims and scope Submit manuscript

Abstract

Saltmarsh land-cover (SLC) ecosystems, composed of unvegetated mudflats, saltmarshes, mangroves, and/or seagrass communities, are vulnerable to climate-induced impacts, such as sea level rise. Extracting a seamless and consistent waterline from satellite imagery is a major challenge because of environmental factors, such as turbidity, water depth and multiple types of underwater vegetation cover that introduce noise in the extraction of information. Hence, a water index, derived from multi-temporal Landsat 8 (OLI) data, acquired under different tides is proposed for mapping land-water across SLC wetlands by tracking waterlines. This provided inundation maps and defined eco-zones to specify south-eastern Bangladesh wetland composition. The NDWI_1 (McFeeters’s water index) applied to 42 OLI images and derived land-water difference maps generated inundation gradient maps with an overall classification accuracy of 87.8%. The simple intersection and union of region-of-interests extracted from the tide heights above the mean low-water springs enabled the mapping of four categories of wetland composition based on hydroperiods: a) irregularly inundated (II), regularly inundated (RI), irregularly exposed (IE; high floodplain), and subtidal (river bed and deep water sea). For all of the three study sites, mangrove, seagrass, non-mangrove and agriculture were all prominent on the IE eco-zone, while only saltmarsh was dominant on the II eco-zone. These maps of SLC wetland will enrich previous concepts of eco-zonation models that include salinity, erosion, accretion and rate of sea level rise as factors, suggesting that inundation extent and tidal phase complexities should be considered in the remote sensing of SLC composition for improved models of SLC vegetation response to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author, MSH.

References

Download references

Acknowledgements

This research was supported by the Postgraduate Research Grant (PGRG) scheme (Vot number: 55203) from the Centre for Research and Innovation Management (CRIM), Universiti Malaysia Terengganu (UMT), Malaysia. Landsat data were downloaded from USGS Earthexplorer portal (http://earthexplorer.usgs.gov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shawkat Hossain.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, S.R., Hossain, M.S. Using a water index approach to mapping periodically inundated saltmarsh land-cover vegetation and eco-zonation using multi-temporal Landsat 8 imagery. J Coast Conserv 28, 19 (2024). https://doi.org/10.1007/s11852-023-01019-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11852-023-01019-w

Keywords

Navigation