Skip to main content

Advertisement

Log in

Sensitivity assessment of the deltaic coast of Medjerda based on fine-grained sediment dynamics, Gulf of Tunis, Western Mediterranean

  • Published:
Journal of Coastal Conservation Aims and scope Submit manuscript

Abstract

As coastal areas become increasingly vulnerable to climate change, the study of nearshore sediment textures along the littoral cell of the Medjerda delta in the Gulf of Tunis, southern Mediterranean coast can provide valuable information (i) on the origin (continental or marine) of the sediment, (ii) its transport direction, and (iii) constitutes an important tool in the assessment of coastal sensitivity. A total of 120 sediments samples underwent grain size analysis and statistic parameters have been calculated. These allowed the identification of five different Sedimentary Types (ST). Accordingly, using grain size indexes (i.e. Mz, SKI and Ku), Sediment Trend Analysis (STA) modeling tools were applied to define the seasonal sediment transport pathways throughout the nearshore of the Medjerda sedimentary cell. Results show that grain size distribution (GSD) and STA model pathways are determined by cross-shore geomorphology, location of the sediment-cell, seasonal incident wave and local terrestrial supply. The appearance in an atypical seabed location of the finer (Mo = 0.1 mm) and the coarser STs (Mo = 0.8 mm) can be indicative of human influence since the coarser particles are usually retained by dam structures. Moreover, the bimodality and the increased distribution of mud are also related to the seasonal incident wave winnowing of the historic deltaic plain submerged by the relative rise in sea level. The evolution of the sediment pattern towards a greater proportion of very fine grains indicates a deficit of sediment supply, particularly of the coarser grains, and demonstrates the coastal vulnerability of the Gulf of Tunis due to anthropic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aagaard T, Kroon A, Andersen S, Moller Sorensen R, Quartel S, Vinther N (2005) Intertidal beach change during storm conditions; Egmond, The Netherland. Marine Geology 218(1-4)65–80. https://doi.org/10.1016/j.margeo.2005.04.001

  • Added A, Ben Mammou A, Abdeljaouad S, Essonni N, Fernex F (2003) Caractérisation géochimique des sédiments de surface du golfe de Tunis. Bull Inst Natn Scien Tech Mer de Salammbô 30:135–142

    Google Scholar 

  • Afli A, Ayari R, Brahim M (2008) Trophic organization of the macro-zoobentic assemblages within coastal areas subjected to anthropogenic activities. J Mar Biol Assoc UK 88:663–674

    Article  Google Scholar 

  • Amrouni O (2002) Réhabilitation et stabilisation des dunes bordières de la côte nord de Mahdia. DEA. Faculté des Sciences El Manar, p 200. http://hdl.handle.net/1834/5398

  • Amrouni O (2008) Morphodynamique d’une plage sableuse microtidale à barres: côte nord de Mahdia (Tunisie orientale). Doctorat de Géologie. Fac. Sci. Tunis, p 297. http://hdl.handle.net/1834/5443

  • Amrouni O, Souissi R, Barusseau JP, Abdeljaouad S, Pauc H, Certain R (2007) Grain-size and morphodynamical state of the bay-of-Mahdia shoreface (Tunisia). Contribution to the assessment of Coastal sensitivity. GeoEcoMarina 13:5–19. https://doi.org/10.5281/zenodo.57333

    Google Scholar 

  • Amrouni O, Hermassi T, Abdeljaouad S, Messaoudi S (2014) Contribution of grain size trend to sediment of microtidal beach .Case of the Gulf of Tunis bay (Cape Ferina- Cape Gammarth, Tunisia). Res J Environ Sci 8:161–177

    Article  Google Scholar 

  • APAL-PNUD-IHEE (2012) Ingénierie de l’Hydraulique, de l’Equipement et de l’Environnement. Etude de la carte de vulnérabilité du littoral Tunisien à l’élévation du niveau de la mer due aux changements climatiques. Rapport définitif de la phase 2. Ministère de l’Environnement, Agence de Protection et d’Aménagement du Littoral: 190 p. http://www.environnement.gov.tn/fileadmin/medias/pdfs/dgeqv/vulnerabilite_adaptation.pdf

  • Arif S, Doumani F (2012) Tunisie, Coût de la Dégradation des Ressources en Eau du Bassin de la Medjerda Programme de Gestion Intégrée Durable de l’Eau (SWIM-SM)

  • Bardi I (2010) Morphodynamique de la côte sableuse microtidale à barres le long de la frange littorale « Gabès – Oued Ferd » (Golfe de Gabès -Tunisie). Doctorat de Géologie. Fac. Sci. Tunis, p 202

  • Barusseau JP (1973) Evolution du plateau continental rochelais (golfe de Gascogne) au cours du Pléistocène terminal et de l’Holocène. Les processus actuels de la sédimentation. Thèse d’Etat, Bordeaux I

  • Barusseau JP (2011) Influence of mixtures of grain-size populations on the parametric and mode characteristics of the coastal sands (Hérault, Mediterranean Sea, France). J Sediment Res 81:611–629. https://doi.org/10.2110/jsr.2011.46

    Article  Google Scholar 

  • Barusseau JP, Braud R (2014) Grain-size components as markers of origin and depositional processes in the coastal zone of the Golfe Du Lion (Mediterranean Sea, France). J Sediment Res 84(8): 626–644. https://doi.org/10.2110/jsr.2014.48

    Article  Google Scholar 

  • Barusseau JP, Diouf MB, DeLa Bardonnie M, El Ghandour N (1999) Méthodologie pour une simulation des transformations granulométriques de sables de la zone d’avant-côte. Oceanologica Acta 22:179–191

    Article  Google Scholar 

  • Ben Charrada R (1997) Etude hydrodynamique et écologique du complexe golfe-lac de Tunis, contribution à la modélisation de l’écosystème pélagique des eaux côtières de Tunis. Doctorat en génie Hydraulique ENIT, p 400

  • Ben Mammou A (1998) Barrages Nebeur, Sidi Salem, Sidi Saad et Sidi Boubaker. Quantification, étude sédimentologique et géotechnique des sédiments piégés. Apports des images satellitaires. Doctorat de Géologie. Fac. Sci. Tunis, p 345

  • Blatt H, Middleton G, Murray R (1972) Origin of sedimentary rocks. Prentice Hall Inc., New Jersey: 634 p

  • Boukadi K (2005) Mise en place d’une grille dynamique à haute résolution pour le modèle des côtes Tunisiennes. Mémoire de Mastère, Hydrodynamique et Modélisation des Environnement côtiers, ENIT/INSTM, p 76

  • Brahim M, Koutitonsky V, Béjaoui B, Sammari C (2007) Simulation numérique du transport des sables sous l’effet des vents dans le golfe de Tunis. Bull Inst Natn Scien Tech Mer de Salammbô 34:157–165

    Google Scholar 

  • Brahim M, Atoui A, Sammari C, Aleya L (2015) Surface sediment dynamics along with hydrodynamics along the shores of Tunis gulf (North-Eastern Mediterranean). J Afr Earth Sci 103:30–41. https://doi.org/10.1016/j.jafrearsci.2014.11.014

    Article  Google Scholar 

  • Bryant EA (1982) Behaviour of grain size characteristics on reflective and dissipative foreshores, Broken Bay, Australia. J Sediment Petrol 52:431–450. https://doi.org/10.1306/212F7F72-2B24-11D7-8648000102C1865D

    Google Scholar 

  • Chiarella D, Longhitano SG (2012) Distinguishing depositional environments in shallow-water mixed, bio-siliciclastic deposits on the basis of the degree of heterolithic segregation (Gelasian, southern Italy). J Sediment Res 82:969–990. https://doi.org/10.2110/jsr.2012.78

    Article  Google Scholar 

  • Chiarella D, Longhitano SG, Muto F (2012) Sedimentary features of the lower Pleistocene mixed siliciclastic-bioclastic tidal deposits of the Catanzaro strait (Calabrian arc, South Italy). Rendiconti Online Società Geologica Italiana 21:919–920

    Google Scholar 

  • Chiarella D, Longhitano SG, Tropeano M (2017) Types of mixing and heterogeneities in siliciclastic-carbonate sediments. Mar Pet Geol 88:617–627. https://doi.org/10.1016/j.marpetgeo.2017.09.010

    Article  Google Scholar 

  • Chkioua A (2005) Dynamique sédimentaire au large du golfe de Tunis. Mastère. Fac. Sci. Tunis, p 92

  • Chouba L, Mzoughi N (2013) Assessment of heavy metals and suspended particles affected by multiple anthropogenic contributions in harbours. International Journal of Environmental Science and Technology 10(4):779–788. https://doi.org/10.1007/s13762-013-0233-0

    Article  Google Scholar 

  • Chu ZX, Chai SK (2008) Yangtze River sediments: in response to three gorges reservoir (TGR) water impoundment in June 2003. J Coast Res 24(1A):30–39. https://doi.org/10.2112/05-0547.1

    Article  Google Scholar 

  • Dai ZJ, Liu JT, Lei YP, Zhang XL (2010) Patterns of sediment transport pathways on a headland bay beach—Nanwan Beach, South China: a case study. J Coast Res 26(6):1096–1103. https://doi.org/10.2112/JCOASTRES-D-09-00097.1

    Article  Google Scholar 

  • Davies B, Day J (1998) Vanishing waters. University of Cape Town Press, Cape town: 487 pp.

  • Delile H, Abichou A, Gadhoum A, Goiran JP, Pleuger E, Monchambert JY, Wilson A, Fentress E, Quinn J, Ben Jerbania I, Ghozzi F (2015) The Geoarchaeology of Utica, Tunisia: the paleogeography of the Mejerda Delta and hypotheses concerning the location of the Ancient Harbor. Geoarchaeology: An International Journal 30:291–306. https://doi.org/10.1002/gea.21514

    Article  Google Scholar 

  • DGSAM (1995) Etude générale pour la protection du littoral Tunisien, Première phase Rapport 2 –Volume 2. Direction Générale des Services Aériens et Maritimes, Ministère de l’Equipement, de l’Habitat et de l’Aménagement du Territoire

  • El Arrim A (1996) Étude d’impact de la dynamique sédimentaire sur la stabilité du littoral du Golfe de Tunis. Doctorat de Géologie. Fac. Sci. Tunis, p 203

  • Ennouri R, Chouba L, Magni P, Kraiem M (2010) Spatial distribution of trace metals (cd, Pb, hg, cu, Zn, Fe and Mn) and oligo-elements (mg, ca, Na and K) in surface sediments of the Gulf of Tunis (northern Tunisia). Environ Monit Assess 163:229–239. https://doi.org/10.1007/s10661-009-0829-5

    Article  Google Scholar 

  • Essonni N (1998) Etude de la dynamique des sels nutritifs et des métaux lourds en relation avec relation avec la sédimentologie et l’hydrodynamique dans le large du Golfe de Tunis. Doctorat de Géologie. Fac. Sci. Tunis, p 229

  • Flemming BW (2007) The influence of grain-size method and sediment mixing on curve shapes and textural parameters: implications for sediment trend analysis. Sediment Geol 202:425–435. https://doi.org/10.1016/j.sedgeo.2007.03.018

    Article  Google Scholar 

  • Flemming BW (2011) Geology, morphology, and sedimentology of estuaries and coasts. In: Wolanski E, McLusky DS (eds) Treatise on estuarine and coastal science 3:7–38. Academic Press, Waltham

    Google Scholar 

  • Flemming BW, Davis RA Jr (1994) Holocene evolution, morphodynamics and sedimentology of the Spiekeroog barrier island system (southern North Sea). Senckenberg Marit 24:117–155

    Google Scholar 

  • Folk RL, Ward WC (1957) Brazos River bar: a study in the signification of grain size parameters. J Sediment Petrol 27(1):3–26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  • Friedman GM (1967) Dynamic processes and statistical parameters compared for size frequency distribution of beach and rivers sands. J Sediment Petrol 37:327–354. https://doi.org/10.1306/74D716CC-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  • Gao S, Collins M (1991) A critique of the McLaren method for defining sediment transport paths: discussion. J Sediment Petrol 61(1):143–146. https://doi.org/10.1306/D42676A9-2B26-11D7-8648000102C1865D

    Article  Google Scholar 

  • Gao S, Collins M (1994a) Analysis of grain size trends, for defining sediment transport pathways in marine environments. J Coast Res 10(1):70–78 https://eprints.soton.ac.uk/id/eprint/72279

    Google Scholar 

  • Gao S, Collins M (1994b) Net sediment transport patterns inferred from grain-size trends, based upon definition of “transport vectors”-reply. Sediment Geol 90:157–159. https://doi.org/10.1016/0037-0738(94)90023-X

    Article  Google Scholar 

  • Gargouri D (2009) Etude morphologique, sédimentologique et géochimique de la frange littorale de Sfax à Skhira : apport à l’aménagement côtier. Doctorat de Géologie. Fac. Sci. Sfax, p 206

  • Garrels RM, Mackenzie FT (1971) Evolution of Sedimentary Rocks, 397 pp. W. W. Norton

  • GIEC (2007) Bilan 2007 des changements climatiques. Contribution des Groupes de travail I, II et III au quatrième Rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat [Équipe de rédaction principale, Pachauri, R.K. et Reisinger, A. (publié sous la direction de GIEC, Genève, Suisse : 103 p. https://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_fr.pdf

  • Glaister RP, Nelson HW (1974) Grain-size distributions, an aid in facies identification. Bull Can Petrol Geol 22:203–240

    Google Scholar 

  • Guillén J, Palanques A (1996) Short- and medium-term grain size changes in deltaic beaches (Ebro Delta, NW Mediterranean). Sediment Geol 101:55–67. https://doi.org/10.1016/0037-0738(95)00021-6

    Article  Google Scholar 

  • Guza RT, Inman DL (1975) Edge waves and beach cusps. J Geophys Res 80:2997–3012. https://doi.org/10.1029/JC080i021p02997

    Article  Google Scholar 

  • Hbaeib H (1992) Comparaison numérique des modèles de prévision des crues application à des basins versant Belge, Francais et Tunisien. Thèse, Ecole Nationale des Ingénieurs de Tunis, Tunisie

  • Hellali MA, Added A, Zaaboub N, Oueslati W (2009) Géochime des métaux lourds dans les sédiments marins de surface du delta de l’Oued Mejerda. RME 3:487–498

    Google Scholar 

  • Hzami A (2015) Approche SIG pour l'étude morphodynamique côtière en relation avec les processus hydro-sédimentaires au niveau du Golfe de Hammamet. Mastère de Géologie. Fac. Sci. Bizerte, p 163. http://hdl.handle.net/1834/12466

  • Hzami A, Amrouni O, Stoleriu C, Pintilie A, Romanescu G, Abdeljaouad S (2016) Satellite images survey for identification the coastal sedimentary system changes and associated vulnerability along the western bay of the Gulf of Tunis (Tunisia, northern Africa), International Symposium, Sustainable development & Present environment, Romania

  • Jauzein A (1971) Document : Evolution récente du delta de la Medjerda (Tunisie)

  • Jebari S, Berndtsson R, Lebdi F, Bahri A (2012) Historical aspects of soil erosion in the Mejerda catchment. Hydrol Sci J 57(5):901–912. https://doi.org/10.1080/02626667.2012.685741

    Article  Google Scholar 

  • Jouirou M (1982) Faciès sédimentaire et processus dynamiques dans la formation d’un milieu lagunaire, évolution halogène et actuelle du lac de Tunis et ses abords. Thèse, Univ. Bordeaux I, p 218

  • Kalai S (1985) Contribution à l’étude de l’impact des aménagements hydrauliques sur la dynamique de l’embouchure de la Medjerda & du littoral environnant. DEA des Sciences de la Terre. Fac. Sci. Tunis. p 61

  • Kouki A (1984) Contribution à l'étude de la dynamique sédimentaire dans le petit golfe de Tunis. Thèse de doctorat 3ème cycle. Univ Nantes-Univ de Tunis, p154

  • LCHF (1978) Etude des ports de pêche côtière. Ministère de l’Equipement et de l’Habitat (MEH) et Laboratoire Central d’Hydraulique de France (LCHF)

  • LeRoux JP (1994) An alternative approach to the identification of the end sediment transport paths based on grain size trends. Sediment Geol 94(1–2):97–107. https://doi.org/10.1016/0037-0738(94)90149-X

    Article  Google Scholar 

  • LeRoux JP, Rojas EM (2007) Sediment transport patterns determined from grain size parameters: overview and state of the art. Sedimentary Geology (From Particle Size to Sediment Dynamics, Hartmann, D. and Flemming, B. ((eds.)) 202 (3): 473–488. https://doi.org/10.1016/j.sedgeo.2007.03.014

  • Liu JT, Zarillo GA (1989) Distribution of grain sizes across a transgressive shoreface. Mar Geol 87:121–136. https://doi.org/10.1016/0025-3227(89)90057-1

    Article  Google Scholar 

  • Louati M (2014) Analyse de données spatiale et la mise en place d’un système d’Information Géographique pour le suivi des évolutions morpho-sédimentaires des plages sableuses dans le Golfe de Tunis. Doctorat de Géologie. Fac. Sci. Tunis, p 188

  • Maghrebi S (1995) dynamique sédimentaire dans le golfe de Gabes (Tunisie) ; impact des aménagements côtiers. Doctorat de Géologie. Fac. Sci. Tunis, p 176

  • Mason CC, Folk RL (1958) Differentiation of beach, dune and Aeolian flat environment by size analysis Mustang Island, Texas. J Sediment Petrol 28:211–226. https://doi.org/10.1306/74D707B3-2B21-11D7-8648000102C1865D

    Google Scholar 

  • Masselink G (1992) Longshore variation of grain size distribution along the coast of the Rhone Delta, southern France: a test of the “McLaren model”. J Coast Res 8(2):286–291 http://www.jstor.org/stable/4297974

    Google Scholar 

  • McCave IN (1978) Erosion, transport and deposition of fine-grained marine sediments. Geological society, London, Special Publications 1984. 15: 35–69. https://doi.org/10.1144/GSL.SP.1984.015.01.03

  • McLaren P (1981) An interpretation of trends in grain-size measurements. J Sediment Petrol 51:611–624. https://doi.org/10.1306/212F7CF2-2B24-11D7-8648000102C1865D

    Google Scholar 

  • McLaren P (1993) Discussion of Masselink, 1992. J Coast Res 9(4):1136–1141

    Google Scholar 

  • McLaren P, Bowles D (1985) The effects of sediment transport on grain-size distributions. J Sediment Petrol 55(4):457–470. https://doi.org/10.1306/212F86FC-2B24-11D7-8648000102C1865D

    Google Scholar 

  • Michel D, Howa H, Thomas C, Chapalain G, Thais L, Malengros D (2000) Sediment dynamics and hydrodynamics on the inner part of the Aquitanian shelf (France): preliminary results. Proceedings of marine Sandwave dynamics, Lille, France

  • Mzoughi N, Chouba L (2012) Heavy metals and PAH assessment based on mussel caging in the north coast of Tunisia (Mediterranean Sea). Int J Environ Res 6(1):109–118. https://doi.org/10.22059/ijer.2011.477

    Google Scholar 

  • Oueslati A (1993) Les côtes de la Tunisie. Géomorphologie et environnement et aptitudes à l’aménagement. Université de Tunis. 387p

  • Paskoff R (1981) L’érosion des côtes P.U.F. « Que sais-je ? » collec. n°1302, Paris, 128p

  • Paskoff R (1994) Le delta de la Medjerda (Tunisie) depuis l'Antiquité. Études Rurales 33 n°133-134. Littoraux en perspectives: 15-29

  • Paskoff R, Sanlaville P (1983) Les côtes de la Tunisie .Variations du niveau marin depuis le tyrrhénien, coll. Maison Orient Medit., 14, sér. Géogr. et Préhist : 92–104

  • Paskoff R, Trousset P (1992) L'ancienne baie d'Utique : du témoignage des textes à celui des images satellitaires. Mappemonde 1:30–48

    Google Scholar 

  • Pedreros R, Howa HL, Michel D (1996) Application of grain size trend analysis for the determination of sediment transport pathways in intertidal areas. Mar Geol 135(1–4):35–49. https://doi.org/10.1016/S0025-3227(96)00042-4

    Article  Google Scholar 

  • Pimenta J (1959) Le cycle Pliocène actuel dans les bassins paraliques de Tunis. Mémoire de la Societé Géologique de France 85

  • Poizot P, Méar Y, Biscara L (2008) Sediment trend analysis through the variation of granulometric parameters: a review of theories and applications. Earth Sci Rev 86(1–4):15–41. https://doi.org/10.1016/j.earscirev.2007.07.004

    Article  Google Scholar 

  • Presley JBJ, Trefry RH, Shokes F (1980) Heavy metal inputs to Mississippi Delta sediments. A historical view. Water Air Soil Pollut 13(4):481–494. https://doi.org/10.1007/BF02191849

    Article  Google Scholar 

  • Saidi H (2013) Etude sédimentologique et morphodynamique des côtes sableuses du golfe de Tunis (Tunisie nord-orientale). Doctorat de Géologie. Fac. Sci. Tunis, p 217

  • Sánchez A, Carriquiry JD (2011) Sediment transport patterns in Todos Santos Bay, Baja California, Mexico, inferred from grain-size trends. In: Manning A.J. (ed.), Sediment Transport in Aquatic Environments. https://doi.org/10.5772/19987

  • Sánchez A, Carriquiry J, Barrera J, López Ortiz BE (2009) Comparación de modelos de transporte de sedimento en la Bahía Todos Santos, Baja California, México. Boletin de la Sociedad Geologica Mexicana 61(1):13–24

    Article  Google Scholar 

  • Sánchez A, Shumilin E, López Ortiz BE, Aguíñiga S, Sánchez Vargas L, Romero Guadarrama A, Rodriguez Meza D (2010) Sediment transport in Bahía Magdalena, inferred of grain-size trend analysis. Lat Am J Aquat Res 38(2):167–177

    Article  Google Scholar 

  • Sliti M (1990) Fonctionnement des brise-lames dans le système marin littoral du Golfe de Tunis. Thèse de 3è cycle de Géologie, université de Bordeaux I, p 222

  • Sorgente R, Drago AF, Ribotti A (2003) Seasonal variability in the Central Mediterranean Sea circulation. Ann Geophys 21:299–322

    Article  Google Scholar 

  • Souibgui Y (1992) Etude du transit littoral dans le secteur de Ghar El Melah. Mémoire de diplôme d’ingénieur. Fac. Sci. Tunis, p 82

  • Soussi N (1988) Les mécanismes de la sédimentation dans le golfe de Tunis (Tunisie) condensés des travaux présentés lors du XXXIème congrès-Assemblée plénière Athènes (Grèce) 31-Fascicule 2: 92

  • Soussi N, Ben Mammou A (1989) Les apports solides en suspension de la Medjerda-Tunisie. 2ème congrès de sédimentologie Paris

  • Stone GW, Stapor FW, May JP, Morgan JP (1992) Multiple sediment sources and a cellular, non-integrated, longshore drift system: Northwest Florida and Southeast Alabama coast, USA. Mar Geol 105:141–154. https://doi.org/10.1016/0025-3227(92)90186-L

    Article  Google Scholar 

  • Syvitski JPM (2003) Supply and flux of sediment along hydrological pathways: research of the 21st century. Global Planet Change 39:1–11. https://doi.org/10.1016/S0921-8181(03)00008-0

    Article  Google Scholar 

  • Turley M (1999) The changing Mediterranean Sea — a sensitive ecosystem? Prog Oceanogr 44:387–400. https://doi.org/10.1016/S0079-6611(99)00033-6

    Article  Google Scholar 

  • UN/MAP/BP/RAC (2005) Action plan concerning species introductions and invasive species in the Mediterranean Sea. RAC/SPA, Tunis, p 30

  • UNEP/MAP (2012) State of the Mediterranean marine and coastal environment, UNEP/MAP Barcelona Convention, Athens. http://web.unep.org/unepmap/state-mediterranean-marine-and-coastal-environment-report-presented-athens

  • Visher GS (1969) Grain-size distributions and depositional processes. J Sediment Petrol 39:1074–1116. https://doi.org/10.1306/74D71D9D-2B21-11D7-8648000102C1865D

    Google Scholar 

  • Walling DE (1999) Linking land use, erosion and sediment yield in river basins. Hydrobiologia 410:223–240. https://doi.org/10.1023/A:1003825813091

    Article  Google Scholar 

  • WCRP (2013) The world climate research Programme accomplishment report. CORDEX, Brussels. https://www.wcrp-climate.org/images/documents/reports_flyers/WCRP_report03_2012.pdf

  • Wright W, Short LD (1984) Morphodynamic variability of surf zones and beaches: a synthesis. Mar Geol 56:93–118. https://doi.org/10.1016/0025-3227(84)90008-2

    Article  Google Scholar 

  • Zaaboub N, Oueslati W, Helali MA, Abdeljaouad S, Javier Huertas F, Galindos AL (2014) Trace elements in different marine sediment fractions of the Gulf of Tunis (Central Mediterranean). Chem Speciat Bioavailab 26:1–12. https://doi.org/10.3184/095422914X13884279095945

    Article  Google Scholar 

  • Zaaboub N, Martins MVA, Dhib A, Bejaoui B, Galgani F, El Bour M, Aleya L (2015) Accumulation of trace metals in sediments in a Mediterranean lagoon: usefulness of metal sediment fractionation and elutriate toxicity assessment. Environ Pollut 207:226–237. https://doi.org/10.1016/j.envpol.2015.09.033

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Jean Paul Barusseau for his careful guidance at each step of the research and for his generous support with the application of the GSD Barusseau model to the Tunisian coast.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oula Amrouni.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amrouni, O., Sánchez, A., Khélifi, N. et al. Sensitivity assessment of the deltaic coast of Medjerda based on fine-grained sediment dynamics, Gulf of Tunis, Western Mediterranean. J Coast Conserv 23, 571–587 (2019). https://doi.org/10.1007/s11852-019-00687-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11852-019-00687-x

Keywords

Navigation