Skip to main content

Advertisement

Log in

Automatic time-series quantification of bluff erosion using a single consumer grade camera as basis for erosion risk assessment and forecasts – a Boston Harbor Islands case study

  • Published:
Journal of Coastal Conservation Aims and scope Submit manuscript

Abstract

Many communities along coastlines and riverbanks are threatened by water erosion and hence an accurate model to predict erosion events is needed in order to plan mitigation strategies. Such models need to rely on readily available meteorological data that may or may not be correlated with the occurrence of erosion events. Computing these correlations requires a quantified index that reports the magnitude of erosion events over time. This study introduces a method to create erosion indices using affordable consumer grade digital cameras. It is able to detect and quantify erosion using an image series obtained from just one such camera by segmenting each images instance into equally sized squares that can be preprocessed and analyzed separately. This approach isolates each image segment from noise and temporary disturbances that frequently occur throughout images taken with low cost cameras. In this fashion, noise may either be addressed locally or simply ignored if it is too extreme. After preprocessing, comparison of subsequent segments yields change matrices that form the basis for segment-specific erosion indices that are later combined into a composite value for the entire image instance. Whenever a segment instance is unavailable or unusable, the algorithm attempts to use neighboring instances whenever possible. When tested against human observation of erosion events during a 6 week period, the resulting index achieves a true positive rate of 67% while producing only a small number of false positives. Finally, the index is validated by significant correlation with various meteorological data streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ayana EK, Worqlul AW, Steenhuis TS (2015) Evaluation of stream water quality data generated from MODIS images in modeling total suspended solid emission to a freshwater lake. Sci Total Environ 523:170–177

    Article  Google Scholar 

  • Barsanti M, Calda N, Valloni R et al (2011) Estimating coastal vulnerability in a meso-tidal beach by means of quantitative and semi-quantitative methodologies. J Coast Res 61:303–308. doi:10.2112/SI61-001.1

    Article  Google Scholar 

  • Beilicci E, Beilicci R, Ştefanescu C (2014) Aspects of optimization of soil erosion control systems. Res J Agric Sci 46:26–34

    Google Scholar 

  • Bejinariu SI, Costin H, Rotaru F et al (2014) Parallel processing and bio-inspired computing for biomedical image registration. 22:253–278

  • Bronen R, Chapin FS (2013) Adaptive governance and institutional strategies for climate-induced community relocations in Alaska. Proc Natl Acad Sci U S A 110:9320–9325. doi:10.1073/pnas.1210508110

    Article  Google Scholar 

  • Buckler WR, Winters HA (1983) Lake Michigan bluff recession. Ann Assoc Am Geogr 73:89–110

    Article  Google Scholar 

  • Castedo R, Fernández M, Trenhaile AS, Paredes C (2013) Modeling cyclic recession of cohesive clay coasts: effects of wave erosion and bluff stability. Mar Geol 335:162–176. doi:10.1016/j.margeo.2012.11.001

    Article  Google Scholar 

  • Dabojani D, Mithun D, Kanti KK (2014) River change detection and bankline erosion recognition using remote sensing and GIS. XIII:100–105

  • Dawson SA, Evans JE (2001) Geological causes of local variation in coastal bluff recession rates, northeast Ohio Shoreline of Lake Erie. Environ Geosci 8:1–20. doi:10.1046/j.1526-0984.2001.008001001.x

    Article  Google Scholar 

  • Day SS, Gran KB, Belmont P, Wawrzyniec T (2013a) Measuring bluff erosion part 2: pairing aerial photographs and terrestrial laser scanning to create a watershed scale sediment budget. Earth Surf Process Landf 38:1068–1082. doi:10.1002/esp.3359

    Article  Google Scholar 

  • Day SS, Gran KB, Belmont P, Wawrzyniec T (2013b) Measuring bluff erosion part 1: terrestrial laser scanning methods for change detection. Earth Surf Process Landf 38:1055–1067. doi:10.1002/esp.3353

    Article  Google Scholar 

  • Dronova I, Gong P, Wang L, Zhong L (2015) Mapping dynamic cover types in a large seasonally flooded wetland using extended principal component analysis and object-based classification. Remote Sens Environ 158:193–206. doi:10.1016/j.rse.2014.10.027

    Article  Google Scholar 

  • Dupret A, Verdant A, Villard P, Mathias H (2011) Three Novell analog-domain algorithms for motion detection in video surveillance. Eurasip J Image Video Process. doi:10.1155/2011/698914

    Google Scholar 

  • Dutta J, Leahy RM, Li Q (2013) Non-local means denoising of dynamic PET images. PLoS One. doi:10.1371/journal.pone.0081390

    Google Scholar 

  • Guo W, Rage UK, Ninomiya S (2013) Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model. Comput Electron Agric 96:58–66

    Article  Google Scholar 

  • Hissel F, Morel G, Pescaroli G et al (2014) Early warning and mass evacuation in coastal cities. Coast Eng 87:193–204. doi:10.1016/j.coastaleng.2013.11.015

    Article  Google Scholar 

  • Huang X, Zhu T, Zhang L, Tang Y (2014) A novel building change index for automatic building change detection from high-resolution remote sensing imagery. Remote Sens Lett 5:713–722. doi:10.1080/2150704X.2014.963732

    Article  Google Scholar 

  • Islam M, Sallu S, Hubacek K, Paavola J (2014) Migrating to tackle climate variability and change? insights from coastal fishing communities in Bangladesh. Clim Change 124:733–746

    Article  Google Scholar 

  • Jia Z, Wang H, Caballero R et al (2011) A two-step approach to see-through bad weather for surveillance video quality enhancement. Proc - IEEE Int Conf Robot Autom 5309–5314. doi:10.1109/ICRA.2011.5979596

  • Jorgenson MT, Brown J (2005) Classification of the Alaskan Beaufort Sea coast and estimation of carbon and sediment inputs from coastal erosion. Geo-Mar Lett 25:69–80. doi:10.1007/s00367-004-0188-8

    Article  Google Scholar 

  • Lalonde J-F, Efros A, Narasimhan S (2012) Estimating the natural illumination conditions from a single outdoor image. Int J Comput Vis 98:123–145

    Article  Google Scholar 

  • Li G, Han X, Lin W, Wei H (2012) Periodic motion detection with ROI-based similarity measure and extrema-based reference selection. IEEE Trans Consum Electron 58:947–954

    Article  Google Scholar 

  • Liau Y-T (2014) Hierarchical segmentation framework for identifying natural vegetation: a case study of the Tehachapi mountains, California. Remote Sens 6:7276–7302. doi:10.3390/rs6087276

    Article  Google Scholar 

  • Matias A, Ferreira O, Mendes I et al (2005) Artificial construction of dunes in the south of Portugal. J Coast Res 21:472–481

    Article  Google Scholar 

  • Müllerová J, Pergl J, Pyšek P (2013) Remote sensing as a tool for monitoring plant invasions: testing the effects of data resolution and image classification approach on the detection of a model plant species heracleum mantegazzianum (giant hogweed). Int J Appl Earth Obs Geoinf 25:55–65. doi:10.1016/j.jag.2013.03.004

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration (1998) Mitigating the impacts of coastal hazards. In: Year of the Ocean Discussion Papers. U.S. Dept. of Commerce, NAOO

  • Nijland W, de Jong R, de Jong SM et al (2014) Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras. Agric For Meteorol 184:98–106. doi:10.1016/j.agrformet.2013.09.007

    Article  Google Scholar 

  • Paganelli C, Peroni M, Baroni G, Riboldi M (2013) Quantification of organ motion based on an adaptive image-based scale invariant feature method. Med Phys 40:111701. doi:10.1118/1.4822486

    Article  Google Scholar 

  • Peltoniemi J, Hakala T, Suomalainen J, Puttonen E (2009) Polarised bidirectional reflectance factor measurements from soil, stones, and snow. J Quant Spectrosc Radiat Transf 110:1940–1953

    Article  Google Scholar 

  • Portillo-Portillo J, Sánchez-Pérez G, Olivares-Mercado J, Pérez-Meana H (2014) Detección de Movimiento de Vehículos en Secuencias de Video Basados en la Diferencia Absoluta entre Fotogramas y la Combinación de Bordes. Inf Tecnol 25:129–136. doi:10.4067/S0718-07642014000500018

    Article  Google Scholar 

  • Rozanov NN (2004) Optical detection of motion of an object with a refractive index coinciding with the refractive index of the surroundings. Opt Spectrosc 96:938–939. doi:10.1134/1.1771431

    Article  Google Scholar 

  • Schmitt K, Albers T, Pham TT, Dinh SC (2013) Site-specific and integrated adaptation to climate change in the coastal mangrove zone of Soc Trang Province, Viet Nam. J Coast Conserv 17:545–558

    Article  Google Scholar 

  • Sedrati M, Anthony E (2014) Confronting coastal morphodynamics with counter-erosion engineering: the emblematic case of Wissant Bay, Dover Strait. J Coast Conserv (Springer Sci Bus Media BV) 18:483–494

    Article  Google Scholar 

  • Tenbrinck D, Jiang X (2015) Image segmentation with arbitrary noise models by solving minimal surface problems. Pattern Recogn 48:3293–3309

    Article  Google Scholar 

  • Van Staveren MF, Warner JF, van Tatenhove JPM, Wester P (2014) Let’s bring in the floods: de-poldering in the Netherlands as a strategy for long-term delta survival? Water Int 39:686–700

    Article  Google Scholar 

  • VanMeter-Adams A, Frankenfeld CL, Bases J et al (2014) Students who demonstrate strong talent and interest in STEM Are initially attracted to STEM through extracurricular experiences. CBE - Life Sci Educ 13:687–697

    Google Scholar 

  • Vicente-Serrano S, Cabello D, Tomás-Burguera M et al (2015) Drought variability and land degradation in semiarid regions: assessment using remote sensing data and drought indices (1982–2011). Remote Sens 7:4391–4423. doi:10.3390/rs70404391

    Article  Google Scholar 

  • Wang L, Ma Y, Zomaya AY et al (2015) A parallel file system with application-aware data layout policies for massive remote sensing image processing in digital earth. IEEE Trans Parallel Distrib Syst 26:1497–1508

    Article  Google Scholar 

  • Yang L, Smith JA, Wright DB et al (2013) Urbanization and climate change: an examination of nonstationarities in urban flooding. J Hydrometeorol 14:1791–1809. doi:10.1175/JHM-D-12-095.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin D. Hellwig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hellwig, M.D. Automatic time-series quantification of bluff erosion using a single consumer grade camera as basis for erosion risk assessment and forecasts – a Boston Harbor Islands case study. J Coast Conserv 20, 469–476 (2016). https://doi.org/10.1007/s11852-016-0460-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11852-016-0460-x

Keywords

Navigation