Skip to main content
Log in

Clinical and molecular features of two diabetes families carrying mitochondrial ND1 T3394C mutation

  • Original Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Background

Mutations in mitochondrial DNA (mtDNA) are found to be associated with type 2 diabetes mellitus (T2DM). However, the molecular pathogenesis of these mutations in T2DM is still poorly understood.

Methods

In this study, we report here the molecular features of two Han Chinese families with maternally transmitted T2DM. The matrilineal relatives are undergoing clinical, biochemical, genetic evaluations, and molecular analysis. Furthermore, the entire mitochondrial genomes of these matrilineal relatives are screened by PCR-Sanger sequencing.

Results

The age at onset of T2DM of these participants varies from 28 to 71 years, with an average of 43 years. Molecular analysis of mitochondrial genomes identifies the existence of ND1 T3394C mutation in both families, together with sets of variants belonging to mitochondrial haplogroup Y2 and M9a. The m.T3394C mutation is localized at very conserved tyrosine at position 30 of ND1, may result the failure in ND1 mRNA metabolism, and lead to mitochondrial dysfunction. Moreover, sequence analysis of matrilineal relatives in Family 1 identifies the m.A14693G mutation which occurs in the TΨC-loop of tRNAGlu (position 54), and is critical to the structural formation and stabilization of this tRNA. Thus, m.A14693G mutation may cause the impairment in tRNA metabolism, thereby worsens the mitochondrial dysfunction caused by ND1 T3394C mutation. However, no functional mtDNA variants are identified in Family 2 which suggest that mitochondrial haplogroup may not play an important role in diabetes expression.

Conclusions

Our study indicates that mitochondrial ND1 T3394C mutation is involved in the pathogenesis of maternally inherited T2DM in these families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study were available from the corresponding author on reasonable request.

Abbreviations

mtDNA:

Mitochondrial DNA

T2DM:

Type 2 diabetes mellitus

MELAS:

Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes

tRNA:

Transfer RNA

OXPHOS:

Oxidative phosphorylation

mt-tRNA:

Mitochondrial transfer RNA

BP:

Blood pressure

BMI:

Body mass index

PTA:

Pure tone audiometry

dB:

Decibel

HPLC:

High-performance liquid chromatography

FPG:

Fasting plasmic glucose

OGTT:

Oral glucose tolerance test

rCRS:

Revised Cambridge reference sequences

CI:

Conservation index

MFE:

Minimum free energy

LHON:

Leber’s hereditary optic neuropathy

References

  1. Akash MSH, Rehman K, Chen S (2013) Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem 114(3):525–531

    Article  CAS  PubMed  Google Scholar 

  2. Xu Y, Wang L, He J et al (2010) China Noncommunicable Disease Surveillance Group (2013) Prevalence and control of diabetes in Chinese adults. JAMA 310(9):948–959

    Article  Google Scholar 

  3. Thomas F, Balkau B, Vauzelle-Kervroedan F et al (1994) Maternal effect and familial aggregation in NIDDM. The CODIAB Study. CODIAB-INSERM-ZENECA Study Group. Diabetes 43(1):63–67

  4. Avital G, Buchshtav M, Zhidkov I et al (2012) Mitochondrial DNA heteroplasmy in diabetes and normal adults: role of acquired and inherited mutational patterns in twins. Hum Mol Genet 21(19):4214–4224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ballinger SW, Shoffner JM, Hedaya EV et al (1992) Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nat Genet 1(1):11–15

  6. van den Ouweland JM, Lemkes HH, Ruitenbeek W et al (1992) Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet 1(5):368–371

    Article  PubMed  Google Scholar 

  7. Gerbitz KD, Gempel K, Brdiczka D (1996) Mitochondria and diabetes. Genetic, biochemical, and clinical implications of the cellular energy circuit. Diabetes 45(2): 113–126

  8. Francisco G, Hernández C, Martínez R et al (2005) Prevalence of mitochondrial A3243G mutation in adult type 1 diabetic patients in Catalonia. Diabetes Metab 31(6):621–622

    Article  CAS  PubMed  Google Scholar 

  9. Salpietro CD, Briuglia S, Merlino MV et al (2003) A mitochondrial DNA mutation (A3243G mtDNA) in a family with cyclic vomiting. Eur J Pediatr 162(10):727–728

    Article  PubMed  Google Scholar 

  10. Kaufmann P, Engelstad K, Wei Y et al (2009) Protean phenotypic features of the A3243G mitochondrial DNA mutation. Arch Neurol 66(1):85–91

    Article  PubMed  Google Scholar 

  11. Maechler P, Wollheim CB (2001) Mitochondrial function in normal and diabetic beta-cells. Nature 414(6865):807–812

    Article  CAS  PubMed  Google Scholar 

  12. Matsubara M, Kanda H, Imamura H et al (2018) Analysis of mitochondrial function in human induced pluripotent stem cells from patients with mitochondrial diabetes due to the A3243G mutation. Sci Rep 8(1):949

    Article  PubMed  PubMed Central  Google Scholar 

  13. Janssen GM, Hensbergen PJ, van Bussel FJ et al (2007) The A3243G tRNALeu(UUR) mutation induces mitochondrial dysfunction and variable disease expression without dominant negative acting translational defects in complex IV subunits at UUR codons. Hum Mol Genet 16(20):2472–2481

    Article  CAS  PubMed  Google Scholar 

  14. Lott MT, Leipzig JN, Derbeneva O et al (2013) mtDNA variation and analysis using Mitomap and Mitomaster. Curr Protoc Bioinformatics 44(123):1.23.1–26

  15. Ding Y, Xia BH, Zhang CJ et al (2018) Mitochondrial tRNALeu(UUR) C3275T, tRNAGln T4363C and tRNALys A8343G mutations may be associated with PCOS and metabolic syndrome. Gene 642:299–306

    Article  CAS  PubMed  Google Scholar 

  16. Ding Y, Zhuo G, Zhang C (2016) The mitochondrial tRNALeu(UUR) A3302G mutation may be associated with insulin resistance in woman with polycystic ovary syndrome. Reprod Sci 23(2):228–233

    Article  CAS  PubMed  Google Scholar 

  17. Li W, Wen C, Li W et al (2015) The tRNA(Gly) T10003C mutation in mitochondrial haplogroup M11b in a Chinese family with diabetes decreases the steady-state level of tRNA(Gly), increases aberrant reactive oxygen species production, and reduces mitochondrial membrane potential. Mol Cell Biochem 408(1–2):171–179

    Article  CAS  PubMed  Google Scholar 

  18. Li K, Wu L, Liu J et al (2020) Maternally inherited diabetes mellitus associated with a novel m.15897G>A mutation in mitochondrial tRNAThr gene. J Diabetes Res 2020:2057187

  19. Wang M, Liu H, Zheng J et al (2016) A deafness- and diabetes-associated tRNA mutation causes deficient pseudouridinylation at position 55 in tRNAGlu and mitochondrial dysfunction. J Biol Chem 291(40):21029–21041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu G, Shen X, Sun Y et al (2020) Heteroplasmy and phenotype spectrum of the mitochondrial tRNALeu (UUR) gene m.3243A>G mutation in seven Han Chinese families. J Neurol Sci 408:116562

  21. American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33:S62–S69

    Article  PubMed Central  Google Scholar 

  22. Lin L, Cui P, Qiu Z et al (2019) The mitochondrial tRNAAla 5587T>C and tRNALeu(CUN) 12280A>G mutations may be associated with hypertension in a Chinese family. Exp Ther Med 17(3):1855–1862

    CAS  PubMed  Google Scholar 

  23. Committee JN, on Prevention, Detection, Evaluation and Treatment of High Blood Pressure, (1997) The sixth report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure. Arch Intern Med 157(21):2413–2446

    Article  Google Scholar 

  24. Ding Y, Teng YS, Zhuo GC et al (2019) The mitochondrial tRNAHis G12192A mutation may modulate the clinical expression of deafness-associated tRNAThr G15927A mutation in a Chinese pedigree. Curr Mol Med 19(2):136–146

    Article  CAS  PubMed  Google Scholar 

  25. Macedo AF, Ramos PL, Hernandez-Moreno L et al (2017) Visual and health outcomes, measured with the activity inventory and the EQ-5D, in visual impairment. Acta Ophthalmol 95(8):e783–e791

    Article  PubMed  Google Scholar 

  26. Ferris FL, Kassoff A, Bresnick GH et al (1982) New visual-acuity charts for clinical research. Am J Ophthalmol 94(1):91–96

    Article  PubMed  Google Scholar 

  27. Qu J, Li R, Zhou X et al (2006) The novel A4435G mutation in the mitochondrial tRNAMet may modulate the phenotypic expression of the LHON-associated ND4 G11778A mutation. Invest Ophthalmol Vis Sci 47(2):475–483

    Article  PubMed  Google Scholar 

  28. Levey AS, Stevens LA, Schmid CH, CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration), et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ding Y, Ye YF, Li MY et al (2020) Mitochondrial tRNAAla 5601C>T variant may affect the clinical expression of the LHON-related ND4 11778G>A mutation in a family. Mol Med Rep 21(1):201–208

    CAS  PubMed  Google Scholar 

  30. Andrews RM, Kubacka I, Chinnery PF et al (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23(2):147

    Article  CAS  PubMed  Google Scholar 

  31. Kong QP, Bandelt HJ, Sun C et al (2006) Updating the East Asian mtDNA phylogeny: a prerequisite for the identification of pathogenic mutations. Hum Mol Genet 15(13):2076–2086

    Article  CAS  PubMed  Google Scholar 

  32. Levin L, Zhidkov I, Gurman Y et al (2013) Functional recurrent mutations in the human mitochondrial phylogeny: dual roles in evolution and disease. Genome Biol Evol 5(5):876–890

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gruber AR, Lorenz R, Bernhart SH et al (2008) The vienna RNA website. Nucleic Acids Res 36(Web Server issue): W70–74

  34. López-Lluch G, Hernández-Camacho JD, Fernández-Ayala DJM et al (2018) Mitochondrial dysfunction in metabolism and ageing: shared mechanisms and outcomes? Biogerontology 19(6):461–480

    Article  PubMed  Google Scholar 

  35. Zia A, Farkhondeh T, Pourbagher-Shahri AM et al (2021) The roles of mitochondrial dysfunction and reactive oxygen species in aging and senescence. Curr Mol Med Online ahead of print

  36. Bibb MJ, Van Etten RA, Wright CT et al (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26(2 Pt 2):167–180

    Article  CAS  PubMed  Google Scholar 

  37. Gadaleta G, Pepe G, De Candia G et al (1989) The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol 28(6):497–516

    Article  CAS  PubMed  Google Scholar 

  38. Roe BA, Ma DP, Wilson RK et al (1985) The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem 260(17):9759–9774

    Article  CAS  PubMed  Google Scholar 

  39. Liang M, Guan M, Zhao F et al (2009) Leber’s hereditary optic neuropathy is associated with mitochondrial ND1 T3394C mutation. Biochem Biophys Res Commun 383(3):286–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Florentz C, Sohm B, Tryoen-Tóth P et al (2003) Human mitochondrial tRNAs in health and disease. Cell Mol Life Sci 60(7):1356–1375

    Article  CAS  PubMed  Google Scholar 

  41. Zhang M, Zhou X, Li C et al (2010) Mitochondrial haplogroup M9a specific variant ND1 T3394C may have a modifying role in the phenotypic expression of the LHON-associated ND4 G11778A mutation. Mol Genet Metab 101(2–3):192–199

    Article  CAS  PubMed  Google Scholar 

  42. Shao J, Chen C, Lin W et al (2017) Clinical and molecular features of a Han Chinese family with maternally transmitted hypertension. Int J Clin Exp Pathol 10(7):7384–7389

    PubMed  PubMed Central  Google Scholar 

  43. Hirai M, Suzuki S, Onoda M et al (1996) Mitochondrial DNA 3394 mutation in the NADH dehydrogenase subunit 1 associated with non-insulin-dependent diabetes mellitus. Biochem Biophys Res Commun 219(3):951–955

    Article  CAS  PubMed  Google Scholar 

  44. Tang DL, Zhou X, Li X et al (2006) Variation of mitochondrial gene and the association with type 2 diabetes mellitus in a Chinese population. Diabetes Res Clin Pract 73(1):77–82

    Article  CAS  PubMed  Google Scholar 

  45. Ji Y, Zhang J, Yu J et al (2019) Contribution of mitochondrial ND1 3394T>C mutation to the phenotypic manifestation of Leber’s hereditary optic neuropathy. Hum Mol Genet 28(9):1515–1529

    Article  CAS  PubMed  Google Scholar 

  46. Suzuki T, Nagao A, Suzuki T (2011) Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet 45:299–329

    Article  CAS  PubMed  Google Scholar 

  47. Hao XD, Yang YL, Tang NL et al (2013) Mitochondrial DNA haplogroup Y is associated to Leigh syndrome in Chinese population. Gene 512(2):460–463

    Article  CAS  PubMed  Google Scholar 

  48. Qin Y, Xue L, Jiang P et al (2014) Mitochondrial tRNA variants in Chinese subjects with coronary heart disease. J Am Heart Assoc 3(1):e000437

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tong Y, Mao Y, Zhou X et al (2007) The mitochondrial tRNA(Glu) A14693G mutation may influence the phenotypic manifestation of ND1 G3460A mutation in a Chinese family with Leber’s hereditary optic neuropathy. Biochem Biophys Res Commun 357(2):524–530

    Article  CAS  PubMed  Google Scholar 

  50. Jiang Z, Teng L, Zhang S et al (2021) Mitochondrial ND1 T4216C and ND2 C5178A mutations are associated with maternally transmitted diabetes mellitus. Mitochondrial DNA A DNA Mapp Seq Anal 32(2):59–65

    CAS  PubMed  Google Scholar 

  51. Barbetti F, D’Annunzio G (2018) Genetic causes and treatment of neonatal diabetes and early childhood diabetes. Best Pract Res Clin Endocrinol Metab 32(4):575–591

    Article  PubMed  Google Scholar 

  52. Hossan T, Kundu S, Alam SS et al (2019) Epigenetic modifications associated with the pathogenesis of type 2 diabetes mellitus. Endocr Metab Immune Disord Drug Targets 19(6):775–786

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Changzheng Xin designed the study, Xiaohong You and Xueming Huang collected the two pedigrees and controls, and performed the clinical examinations. Luowen Bi and Rui Li performed the molecular analysis of mtDNA genes; Lin Zheng analyzed the data. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Changzheng Xin.

Ethics declarations

Ethics approval

This study was approved by the Ethics Committee of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University.

Informed consent

The informed consent was obtained from each individual participating for this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, X., Huang, X., Bi, L. et al. Clinical and molecular features of two diabetes families carrying mitochondrial ND1 T3394C mutation. Ir J Med Sci 191, 749–758 (2022). https://doi.org/10.1007/s11845-021-02620-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-021-02620-4

Keywords

Navigation