Skip to main content

Advertisement

Log in

Tree Quality in Agroforestry Systems Managed by Small-Scale Mayan Farmers in Chiapas, Mexico

  • Research Paper
  • Published:
Small-scale Forestry Aims and scope Submit manuscript

Abstract

Increasingly, plantations for food, fiber and wood, are necessary to provide a growing world population. Agroforestry systems become more and more important, however these systems usually develop in marginal conditions, limited land, restricted funding, occasional technical support and above this, there is limited documentation and evaluation of innovated traditional systems in indigenous and small-scale contexts, which challenge forest scientists. The aim of this research was to assess the quality of trees in plots managed by Mayan indigenous farmers who planted agroforestry systems with fine wood species to increase the value of land and labor in localities with highly-marginal social conditions in Northern Chiapas, México. Twenty oldest plots were selected within a group of previously established plots (eight with improved fallow, six with shaded coffee and six with maize crop associated to trees) where forest inventories were carried out in nested 100 and 1000 m2-circular plots. In all plots tree diameter, height, quality indicators and the incidence of the pest Hypsipyla grandella were measured. Trees in the maize-associated-to-trees system are favored by the practices applied to annual crop during the first 3rd–5th years, a period in which they are free from the interference of other trees and benefit from favorable light conditions, weeding and a higher intensive care from the farmer while shaded coffee and improved fallow have higher tree densities and a more closed canopy condition than maize associated to trees. In consequence, maize associated to trees shows 68.1 % stems with good form; shaded coffee and improved fallow averaged 40.5 and 39.7 % of good quality stems, respectively; improved fallow exhibited a greater number of suppressed trees than shaded coffee and maize associated to trees (p < 0.0001). In addition, maize associated to trees showed the highest proportion of trees with commercial value with 56.9 %, followed by improved fallow with 28.2 %, and shaded coffee with 11.8 % (p < 0.0001); the rest were trees with domestic uses. However, maize associated to trees significantly result with high incidence of H. grandella probably due to the crown exposure. Timber volume averaged 92.9 ± 68.9 m3 for improved fallow, 77.3 ± 24.8 m3 for shaded coffee, and 52.5 ± 39.7 m3 for maize associated to trees. The value of the fine wood represents increment in income, variety of products and self-employment for households. Nonetheless, improved fallow and coffee plantations might benefit from the elimination of competitors from larger trees to favor promising immature ones and pruning, while maize crop associated to trees might benefit from opportune pruning for controlling the stem borer as well as tree replacement to achieve long term replacement and harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adekunle VAJ, Bakare Y (2004) Rural livelihood benefits from participation in the Taungya agroforestry system in Ondo State of Nigeria. Small-Scale Econ Manag Policy 3(1):131–138

    Google Scholar 

  • Baynes J, Herbohn J, Gregorio N, Fernández J (2015) How useful are small stands of low quality timber? Small-Scale For 14:193–204

    Article  Google Scholar 

  • Bray DB, Merino LP (2005) La experiencia de las comunidades forestales en México. Mexico D. F. Secretaria de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología, Consejo Civil Mexicano para la Silvicultura Sostenible A. C., Ford Foundation. México. p 276

  • CATIE (2000) Parcelas permanentes de muestreo en bosque natural tropical, guía para el establecimiento y medición. Turrialba, Costa Rica, Centro Agronómico Tropical de Investigación y Enseñanza (CATIE)

    Google Scholar 

  • Chazdon LR (2014) The promise of tropical forest regeneration in an age of deforestation. The University of Chicago Press, London

    Book  Google Scholar 

  • De Sousa K, Detlefsen G, Melo E, Tobar D, Casanoves F (2015) Timber yield from smallholder agroforestry systems in Nicaragua and Honduras. Agrofor Syst. doi:10.1007/s10457-015-9846-2

    Google Scholar 

  • Diemont SAW, Martin JF (2009) Lacandon Maya ecosystem management: sustainable design for subsistence and environmental restoration. Ecol Appl 19(1):254–266

    Article  PubMed  Google Scholar 

  • Food and Agriculture Organization of The United Nations (FAO) (2014) State of the world’s forests: enhancing the socioeconomic benefits from forests. Food and Agriculture Organization of The United Nations, Rome, Italy (State of the World’s Forests)

  • Ford A, Nigh R (2015) The Maya forest garden. Eight millennia of sustainable cultivation of the tropical woodlands. Left Coast Press, Walnut 259p

    Google Scholar 

  • Guariguata MR, Sáenz GP (2002) Post-logging acorn production and oak regeneration in a tropical montane forest, Costa Rica. For Ecol. Manag 167:285–293

    Article  Google Scholar 

  • Holbrook NM, Putz FW (1989) Influence of neighbors on tree form: effects of lateral shade and prevention of sway on the allometry of Liquidambar styraciflua (sweet gum). Am J Bot 76(12):1740–1749

    Article  Google Scholar 

  • Hutchinson ID (1981) Sarawak liberation thinning: background and initial analysis of performance. In: UNDP/FAO, Sarawak, Malaysia, p 121

  • Hutchinson ID (1993) Puntos de partida y muestreo diagnóstico para la silvicultura de bosques naturales del trópico húmedo. Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba

    Google Scholar 

  • Hutchinson ID, Wadsworth FH (2006) Efectos de la liberación en un bosque secundario de Costa Rica. Recur Nat Ambiente, Costa Rica 46–47:152–157

    Google Scholar 

  • Imo M (2009) Interactions amongst trees and crops in Taungya systems of western Kenya. Agrofor Syst 76:265–273

    Article  Google Scholar 

  • Kalame FB, Aidoo R, Nkem J, Ajayie OC, Kanninen M, Luukkanen O, Idinoba M (2011) Modified Taungya system in Ghana: a win-win practice for forestry and adaptation to climate change? Environ Sci Policy 14:519–530

    Article  Google Scholar 

  • Lamprecht H (1990) Silvicultura en los trópicos: los ecosistemas forestales en los bosques tropicales y sus especies arbóreas, posibilidades y métodos para un aprovechamiento sostenido. GTZ, Eschborn 340p

    Google Scholar 

  • Mahroof RM, Hauxwell C, Edirisinghe JP, Watt AD, Newton AC (2002) Effects of artificial shade on attack by the mahogany shoot borer, Hypsipyla robusta (Moore). Agric For Entomol 4:283–292

    Article  Google Scholar 

  • Nyland RD (2002) Silviculture: concepts and applications, 2nd edn. McGraw-Hill, New York 682 p

    Google Scholar 

  • Olvera-Vargas M, Moreno-Gómez S, Figueroa-Rangel B (1996) Sitios Permanentes para la Investigación Silvícola. Manual para su Establecimiento. Universidad de Guadalajara, Guadalajara

    Google Scholar 

  • Opuni-Frimpong E, Karnowky DF, Storer AJ, Cobbinah JR (2008) Silvicultural systems for plantation mahogany in Africa: influences of canopy shade on tree growth and pest damage. For Ecol Manag 255:328–333

    Article  Google Scholar 

  • Pérez-Salicrup DR, Esquivel R (2008) Tree infection by Hypsipyla grandella in Swietenia macrophylla and Cedrela odorata (Meliaceae) in Mexico’s southern Yucatan Peninsula. For Ecol Manag 255(2):324–327

    Article  Google Scholar 

  • SAS Institute Inc. (2008) SAS/STAT User’s Guide, Release 9.2 edn. SAS Institute, Cary

    Google Scholar 

  • Segura M, Venegas G (1999) Tablas de volumen comercial con corteza para encino, roble y otras especies del bosque pluvial montano de la cordillera de Talamanca, Costa Rica. CATIE, Turrialba

    Google Scholar 

  • Soto-Pinto L, Aguirre-Dávila CM (2015) Carbon stocks in organic coffee systems in Chiapas, Mexico. J Agric Sci 7(1):117–128

    Google Scholar 

  • Soto-Pinto L, Armijo-Florentino C (2014) Changes in agroecosystem structure and function along a chronosequence of Taungya system in Chiapas, Mexico. J Agric Sci 6(11):37–57

    Google Scholar 

  • Soto-Pinto L, Perfecto I, Castillo-Hernández J, Caballero-Nieto J (2000) Shade effect on coffee production at the northern tzeltal zone of the state of Chiapas, Mexico. Agric Ecosyst Environ 80(1–2):61–69

    Article  Google Scholar 

  • Soto-Pinto L, Villalvazo V, Jimenez-Ferrer G, Ramírez-Marcial N, Montoya G, Sinclair F (2007) The role of local knowledge in determining shade composition of multistrata coffee systems in Chiapas, Mexico. Biodiver Conserv 16:419–436

    Article  Google Scholar 

  • Soto-Pinto L, Anzueto-Martinez M, Mendoza J, Jiménez-Ferrer G, De Jong B (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78(1):39–51

    Article  Google Scholar 

  • Soto-Pinto L, Anzueto MM, Quechulpa (2011) El acahual mejorado. Un prototipo agroforestal. El Colegio de la Frontera Sur, San Cristóbal de las Casas

    Google Scholar 

  • Soto-Pinto L, Castillo Santiago MA, Jiménez Ferrer G (2012) Agroforestry systems and local institutional development for preventing deforestation in Chiapas, Mexico. In: Moutinho P (ed) Deforestation around the world. InTech Open Access, Rijeka, pp 333–350

    Google Scholar 

  • Soto-Pinto L, Anzueto-Martínez M (in press) Los acahuales mejorados. Una práctica agroforestal innovadora de los Maya Tseltales. In: Moreno Calles I, Vallejo Ramos M, Casas A, Toledo VM (eds) Manejo Etnoagroforestal en México. Universidad Nacional Autónoma de México, Morelia, México

  • Tschakert P, Coomesb OT, Potvin C (2007) Indigenous livelihoods, slash-and-burn agriculture, and carbon stocks in Eastern Panama. Ecol Econ 60:807–820

    Article  Google Scholar 

  • Villegas Z, Peña-Claros M, Mostacedo M, Alarcón A, Licona JC, Leaño C, Pariona W, Choque U (2009) Silvicultural treatments enhance growth rates of future crop trees in a tropical dry forest. For Ecol Manag 258(6):971–977

    Article  Google Scholar 

  • Wadsworth FH, Zweede JC (2006) Liberation: acceptable production of tropical forest timber. For Ecol Manag 233:45–51

    Article  Google Scholar 

  • Wiersum KF (1997) Indigenous exploitation and management of tropical forest resources: an evolutionary continuum in forest-people interactions. Agric Ecosyst Environ 63:1–16

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the farmers from Muquenal, Jolcalcuala, Alan Kantajal and Cololteel in Municipality of Chilón, and Arroyo Palenque in the Municipality of Salto de Agua, Chiapas, Mexico. Thanks also go to the Cooperative Ambio for the accompaniment, to Emmanuel Valencia for geographical assistance, and financial support from the projects: “Proyecto Multidisciplinario y Transversal de Café”, supported by ECOSUR and “Diseño, construcción, equipamiento y puesta en marcha de un Centro Estatal de Innovación y Transferencia de Tecnología para el Desarrollo de la Caficultura Chiapaneca” (FOMIX 249930 Mexican National Council for Science and Technology-CONACYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Soto Pinto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, L.S., Martínez, M.A., Zurimendi, P.M. et al. Tree Quality in Agroforestry Systems Managed by Small-Scale Mayan Farmers in Chiapas, Mexico. Small-scale Forestry 16, 103–118 (2017). https://doi.org/10.1007/s11842-016-9345-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11842-016-9345-y

Keywords

Navigation