Skip to main content
Log in

Effect of TiO2 on the Phase Transformation and Microstructure Evolution of Ti-Containing Melting Slag in the Alkali Fusion Process

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effect of TiO2 on the phase transformation and microstructure evolution of Ti-containing melting slag in the alkali fusion process has been investigated. The results showed that, after alkali fusion roasting, the original phase of Ti-containing melting slag was completely decomposed by molten NaOH, and that the alkali fusion slag mainly included Na2TiO3 and NaMO2 (M = Ti, Mg). With increasing TiO2 content, NaMO2 and Na2TiO3 converted to each other, and the content of sodium magnesium silicate also changed with the “in and out” of Mg. The contents of NaAlO2 and silicates were not significantly affected by the TiO2 content, while the microstructure of the melting slag corroded by molten NaOH changed greatly. With increasing TiO2 content, the microstructure of the alkali fusion slag transformed from an uneven grain size to a uniform grain size, and ultimately a compact structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.L. Fan, D.F. Chen, P. Liu, H.M. Duan, Y.W. Huang, M.J. Long, and T. Liu, J. Non Cryst. Solids 493, 57 (2018).

    Article  Google Scholar 

  2. L.Q. Dong, K. Cheng, W.J. Weng, C.L. Song, P.Y. Du, G. Shen, and G.R. Han, Thin Solid Films 519, 4634 (2011).

    Article  Google Scholar 

  3. Y.H. Liu, F.C. Meng, F.Q. Fang, W.J. Wang, and J.L. Chu, Dyes Pigment. 125, 384 (2016).

    Article  Google Scholar 

  4. J.B. Rosenbaum, JOM 34, 76 (1982).

    Article  Google Scholar 

  5. W.Z. Liu, L. Lü, H.R. Yue, B. Liang, and C. Li, J. Alloys Compd. 705, 572 (2017).

    Article  Google Scholar 

  6. F.L. Yang and V. Hlavacek, AICHE J. 46, 355 (2000).

    Article  Google Scholar 

  7. J.P. Jalava, Ind. Eng. Chem. Res. 31, 608 (1992).

    Article  Google Scholar 

  8. J.H. Braun, A. Baidins, and R.E. Marganski, Prog. Org. Coat. 20, 105 (1992).

    Article  Google Scholar 

  9. W. Zhang, Z.W. Zhu, and C.Y. Cheng, Hydrometallurgy 108, 177 (2011).

    Article  Google Scholar 

  10. A.L. Dann, R.S. Cooper, and J.P. Bowman, Water Res. 43, 2302 (2009).

    Article  Google Scholar 

  11. B. Liang, C. Li, C.G. Zhang, and Y.K. Zhang, Hydrometallurgy 76, 173 (2005).

    Article  Google Scholar 

  12. M.H.H. Mahmoud, Sep. Purif. Technol. 84, 63 (2012).

    Article  Google Scholar 

  13. A.A. Nayl, I.M. Ismail, and H.F. Aly, Hydrometallurgy 98, 196 (2009).

    Article  Google Scholar 

  14. C. Xu, Z. Yuan, and X. Wang, Chin. J. Chem. Eng. 14, 281 (2006).

    Article  Google Scholar 

  15. H.G. Du, Theory of Smelting Vanadium-Bearing Titanomagnetite by Blast Furnace (Science Press, Beijing, 1996).

    Google Scholar 

  16. X.W. Lv, Z.G. Lun, J.Q. Yin, and C.G. Bai, ISIJ Int. 53, 1115 (2013).

    Article  Google Scholar 

  17. D.S. Chen, B. Song, L.N. Wang, T. Qi, Y. Wang, and W.J. Wang, Miner. Eng. 24, 864 (2011).

    Article  Google Scholar 

  18. Y.B. Wang, T. Qi, J.L. Chu, and W. Zhao, Rare Met. 29, 162 (2010).

    Article  Google Scholar 

  19. L. Zhang, L.N. Zhang, M.Y. Wang, G.Q. Li, and Z.T. Sui, Miner. Eng. 20, 684 (2007).

    Article  Google Scholar 

  20. W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu, Steel Res. Int. 88, 1600120 (2017).

    Article  Google Scholar 

  21. Z.F. Yuan, Y.F. Pan, E. Zhou, X.U. Cong, and S.Q. Li, J. Iron. Steel Res. Int. 14, 1 (2007).

    Google Scholar 

  22. W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu, Ironmak. Steelmak. 44, 294 (2017).

    Article  Google Scholar 

  23. Y.J. Zhang, T. Qi, and Y. Zhang, Hydrometallurgy 96, 52 (2009).

    Article  Google Scholar 

  24. T.Y. Xue, L.N. Wang, T. Qi, J.L. Chu, J.K. Qu, and C.H. Liu, Hydrometallurgy 95, 22 (2009).

    Article  Google Scholar 

  25. Y. Li, H.Y. Yu, Z.T. Zhang, M. Zhang, and M. Guo, ISIJ Int. 55, 134 (2015).

    Article  Google Scholar 

  26. Y. Wang, J. Li, L. Wang, T.Y. Xue, and T. Qi, Ind. Eng. Chem. Res. 49, 7693 (2010).

    Article  Google Scholar 

  27. D.S. Chen, L.S. Zhao, Y.H. Liu, T. Qi, J.C. Wang, and L.N. Wang, J. Hazard. Mater. 245, 588 (2013).

    Article  Google Scholar 

  28. Y. Feng, J.G. Wang, L.N. Wang, T. Qi, T.Y. Xue, and J.L. Chu, Rare Met. 28, 564 (2009).

    Article  Google Scholar 

  29. Y.F. Han, T.C. Sun, J. Li, T. Qi, L.N. Wang, and J.K. Qu, Int. J. Min. Met. Mater. 19, 205 (2012).

    Article  Google Scholar 

  30. J. Ma, G.Q. Fu, W. Li, and M.Y. Zhu, Int. J. Min. Met. Mater. 27, 310 (2020).

    Article  Google Scholar 

  31. W. Antony Hill and A.R. Moon, J. Am. Ceram. Soc. 68, C-266 (1985).

    Article  Google Scholar 

  32. C.E. Bamberger and G.M. Begun, J. Am. Ceram. Soc. 70, C-48 (1987).

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (51904066), the Natural Science Foundation of Liaoning Province (2023-MS-075), and the Fundamental Research Funds for the Central Universities (N2325015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li or Miaoyong Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Li, W., Fu, G. et al. Effect of TiO2 on the Phase Transformation and Microstructure Evolution of Ti-Containing Melting Slag in the Alkali Fusion Process. JOM (2024). https://doi.org/10.1007/s11837-024-06558-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06558-7

Navigation