Skip to main content
Log in

Morphology Evolution of CuO Supported on CeO2 and Its Role in Electrochemical CO2 Reduction

  • Materials Processing and Kinetic Phenomena: In Honor of Carl V. Thompson
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ceria (CeO2) is one of the most widely used metal oxides of rare earth metals. Crucially, ceria has synergistic effects with various active metals via strong metal-support interactions. Therefore, it is attracting attention as a catalyst material for the electrochemical CO2 reduction reaction (eCO2RR). Cu–ceria composites are known to involve close interactions such as charge transfer between adjacent Cu and Ce atoms, but in-depth studies are needed to utilize the properties at the catalyst interface. In this study, Cu–ceria nanocubes (NCs) are synthesized, and the Cu–ceria NC interface is characterized at each step of the synthetic process. In addition, analysis of ceria nanorods (NRs) is used for comparison to identify how the CuO morphologies at the Cu/ceria interface differ, and the formation mechanism of CuO on ceria at each synthesis step is discussed in detail. Finally, analyses of valence states and interactions through charge transfer at the Cu/ceria interface reveal that Cu in a mixed oxidation state conducive to C2+ production is stabilized at the Cu/ceria interface. In the eCO2RR using Cu–ceria NC, the C2+ partial current density is about 32 times higher than that of the corresponding Cu–carbon catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. De Luna, C. Hahn, D. Higgins, S.A. Jaffer, T.F. Jaramillo, and E.H. Sargent, Science 364, eaav3506 (2019).

    Article  ADS  PubMed  Google Scholar 

  2. S. Verma, S. Lu, and P.J. Kenis, Nat. Energy 4, 466 (2019).

    Article  ADS  CAS  Google Scholar 

  3. K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard, and T.F. Jaramillo, J. Am. Chem. Soc. 136, 14107 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. M.B. Ross, P. De Luna, Y. Li, C.-T. Dinh, D. Kim, P. Yang, and E.H. Sargent, Nat. Catal. 2, 648 (2019).

    Article  CAS  Google Scholar 

  5. D. Gao, R.M. Arán-Ais, H.S. Jeon, and B. Roldan Cuenya, Nat. Catal. 2, 198 (2019).

    Article  CAS  Google Scholar 

  6. I. Merino-Garcia, J. Albo, J. Solla-Gullon, V. Montiel, and A. Irabien, J. CO2 Util. 31, 135 (2019).

    Article  CAS  Google Scholar 

  7. S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld, S. Horch, B. Seger, I.E. Stephens, K. Chan, and C. Hahn, Chem. Rev. 119, 7610 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. J. Albo, A. Sáez, J. Solla-Gullón, V. Montiel, and A. Irabien, Appl. Catal. B 176, 709 (2015).

    Article  Google Scholar 

  9. M. Perfecto-Irigaray, J. Albo, G. Beobide, O. Castillo, A. Irabien, and S. Pérez-Yáñez, RSC Adv. 8, 21092 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, and P. Strasser, J. Am. Chem. Soc. 136, 6978 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M.B. Ross, O.S. Bushuyev, P. Todorović, T. Regier, S.O. Kelley, P. Yang, and E.H. Sargent, Nat. Catal. 1, 103 (2018).

    Article  Google Scholar 

  12. Y. Baek, H. Song, D. Hong, S. Wang, S. Lee, Y.-C. Joo, G.-D. Lee, and J. Oh, J. Mater. Chem. A 10, 9393 (2022).

    Article  CAS  Google Scholar 

  13. R.S. Kanase, K.B. Lee, M. Arunachalam, R.P. Sivasankaran, J. Oh, and S.H. Kang, Appl. Surf. Sci. 584, 152518 (2022).

    Article  CAS  Google Scholar 

  14. H. Song, Y.C. Tan, B. Kim, S. Ringe, and J. Oh, ACS Appl. Mater. Interfaces 13, 55272 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. J.T. Song, H. Song, B. Kim, and J. Oh, Catalysts 9, 224 (2019).

    Article  Google Scholar 

  16. M.R. Singh, Y. Kwon, Y. Lum, J.W. Ager III., and A.T. Bell, J. Am. Chem. Soc. 138, 13006 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Y.E. Kim, W. Lee, Y.N. Ko, J.E. Park, D. Tan, J. Hong, Y.E. Jeon, J. Oh, and K.T. Park, ACS Sustain. Chem. Eng. 10, 11710 (2022).

    Article  CAS  Google Scholar 

  18. Y.C. Tan, K.B. Lee, H. Song, and J. Oh, Joule 4, 1104 (2020).

    Article  CAS  Google Scholar 

  19. H. Xiao, W.A. Goddard, T. Cheng, and Y. Liu, Proc. Natl. Acad. Sci. 114, 6685 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. T.-C. Chou, C.-C. Chang, H.-L. Yu, W.-Y. Yu, C.-L. Dong, J.-J.S. Velasco-Vélez, C.-H. Chuang, L.-C. Chen, J.-F. Lee, and J.-M. Chen, J. Am. Chem. Soc. 142, 2857 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. S. Bai, Q. Shao, P. Wang, Q. Dai, X. Wang, and X. Huang, J. Am. Chem. Soc. 139, 6827 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. J.S. Elias, K.A. Stoerzinger, W.T. Hong, M. Risch, L. Giordano, A.N. Mansour, and Y. Shao-Horn, ACS Catal. 7, 6843 (2017).

    Article  CAS  Google Scholar 

  23. S. Hilaire, X. Wang, T. Luo, R. Gorte, and J. Wagner, Appl. Catal. A 215, 271 (2001).

    Article  CAS  Google Scholar 

  24. W. Deng, and M. Flytzani-Stephanopoulos, Angew. Chem. Int. Ed. 45, 2285 (2006).

    Article  CAS  Google Scholar 

  25. Q. Fu, H. Saltsburg, and M. Flytzani-Stephanopoulos, Science 301, 935 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. M. Cargnello, V.V. Doan-Nguyen, T.R. Gordon, R.E. Diaz, E.A. Stach, R.J. Gorte, P. Fornasiero, and C.B. Murray, Science 341, 771 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. J.A. Rodriguez, P. Liu, D.J. Stacchiola, S.D. Senanayake, M.G. White, and J.G. Chen, ACS Catal. 5, 6696 (2015).

    Article  CAS  Google Scholar 

  28. Y. Wang, Z. Chen, P. Han, Y. Du, Z. Gu, X. Xu, and G. Zheng, ACS Catal. 8, 7113 (2018).

    Article  CAS  Google Scholar 

  29. S.B. Varandili, J. Huang, E. Oveisi, G.L. De Gregorio, M. Mensi, M. Strach, J. Vavra, C. Gadiyar, A. Bhowmik, and R. Buonsanti, ACS Catal. 9, 5035 (2019).

    Article  CAS  Google Scholar 

  30. Z. Li, R. Wu, L. Zhao, P. Li, X. Wei, J. Wang, J.S. Chen, and T. Zhang, Nano Res. 14, 3795 (2021).

    Article  ADS  CAS  Google Scholar 

  31. M. Nolan, J. Chem. Phys. 136, 134703 (2012).

    Article  ADS  PubMed  Google Scholar 

  32. A. Trovarelli, and J. Llorca, ACS Catal. 7, 4716 (2017).

    Article  CAS  Google Scholar 

  33. J. Graciani, K. Mudiyanselage, F. Xu, A.E. Baber, J. Evans, S.D. Senanayake, D.J. Stacchiola, P. Liu, J. Hrbek, and J.F. Sanz, Science 345, 546 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. K. Yu, L.L. Lou, S. Liu, and W. Zhou, Adv. Sci. 7, 1901970 (2020).

    Article  CAS  Google Scholar 

  35. A. Chen, X. Yu, Y. Zhou, S. Miao, Y. Li, S. Kuld, J. Sehested, J. Liu, T. Aoki, and S. Hong, Nat. Catal. 2, 334 (2019).

    Article  CAS  Google Scholar 

  36. S. Hong, H.G. Abbas, K. Jang, K.K. Patra, B. Kim, B.U. Choi, H. Song, K.S. Lee, P.P. Choi, and S. Ringe, Adv. Mater. 35, 2208996 (2023).

    Article  CAS  Google Scholar 

  37. S. Yao, W. Xu, A. Johnston-Peck, F. Zhao, Z. Liu, S. Luo, S. Senanayake, A. Martínez-Arias, W. Liu, and J. Rodriguez, Phys. Chem. Chem. Phys. 16, 17183 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. L. Lin, S. Yao, Z. Liu, F. Zhang, N. Li, D. Vovchok, A. Martinez-Arias, R. Castañeda, J. Lin, and S.D. Senanayake, J. Phys. Chem. C 122, 12934 (2018).

    Article  CAS  Google Scholar 

  39. D.G. Araiza, A. Gómez-Cortés, and G. Díaz, Catal. Today 349, 235 (2020).

    Article  CAS  Google Scholar 

  40. T. Guo, J. Du, and J. Li, J. Mater. Sci. 51, 10917 (2016).

    Article  ADS  CAS  Google Scholar 

  41. I.I. Soykal, B. Bayram, H. Sohn, P. Gawade, J.T. Miller, and U.S. Ozkan, Appl. Catal. A 449, 47 (2012).

    Article  CAS  Google Scholar 

  42. M. Khawaji, and D. Chadwick, Catal. Sci. Technol. 8, 2529 (2018).

    Article  CAS  Google Scholar 

  43. D. Gamarra, A.L. Cámara, M. Monte, S. Rasmussen, L. Chinchilla, A. Hungría, G. Munuera, N. Gyorffy, Z. Schay, and V.C. Corberán, Appl. Catal. B 130, 224 (2013).

    Article  Google Scholar 

  44. C. Dong, Y. Zhou, N. Ta, and W. Shen, CrystEngComm 22, 3033 (2020).

    Article  CAS  Google Scholar 

  45. S. Hong, H.G. Abbas, K. Jang, K.K. Patra, B. Kim, B.U. Choi, H. Song, K.S. Lee, P.P. Choi, and S. Ringe, Adv. Mater. 35, 2208996 (2022).

    Article  Google Scholar 

  46. C. Henrist, K. Traina, C. Hubert, G. Toussaint, A. Rulmont, and R. Cloots, J. Cryst. Growth 254, 176 (2003).

    Article  ADS  CAS  Google Scholar 

  47. J. Jorda, and M.T.S. Cohen-Adad, J. Less Common Met. 171, 127 (1991).

    Article  CAS  Google Scholar 

  48. G. Molteni, C.L. Bianchi, G. Marinoni, N. Santo, and A. Ponti, New J. Chem. 30, 1137 (2006).

    Article  CAS  Google Scholar 

  49. J.-W. Lim, J. Iijima, Y. Zhu, J.H. Yoo, G.-S. Choi, K. Mimura, and M. Isshiki, Thin Solid Films 516, 4040 (2008).

    Article  ADS  CAS  Google Scholar 

  50. G.E. Walrafen, and R.T. Douglas, J. Chem. Phys. 124, 114504 (2006).

    Article  ADS  PubMed  Google Scholar 

  51. L. Wu, S. Dey, M. Gong, F. Liu, and R.H. Castro, J. Phys. Chem. C 118, 30187 (2014).

    Article  CAS  Google Scholar 

  52. M. Molinari, S.C. Parker, D.C. Sayle, and M.S. Islam, J. Phys. Chem. C 116, 7073 (2012).

    Article  CAS  Google Scholar 

  53. S.-H. Lee, Y.-S. Her, and E. Matijević, J. Colloid Interface Sci. 186, 193 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. R.J. Candal, A.E. Regazzoni, and M.A. Blesa, J. Mater. Chem. 2, 657 (1992).

    Article  CAS  Google Scholar 

  55. W.-W. Wang, W.-Z. Yu, P.-P. Du, H. Xu, Z. Jin, R. Si, C. Ma, S. Shi, C.-J. Jia, and C.-H. Yan, ACS Catal. 7, 1313 (2017).

    Article  CAS  Google Scholar 

  56. J. Han, J. Meeprasert, P. Maitarad, S. Nammuangruk, L. Shi, and D. Zhang, J. Phys. Chem. C 120, 1523 (2016).

    Article  CAS  Google Scholar 

  57. B. Kim, H. Seong, J.T. Song, K. Kwak, H. Song, Y.C. Tan, G. Park, D. Lee, and J. Oh, ACS Energy Lett. 5, 749 (2019).

    Article  Google Scholar 

  58. Y.C. Tan, W.K. Quek, B. Kim, S. Sugiarto, J. Oh, and D. Kai, ACS Energy Lett. 7, 2012 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (Nos. 2021R1A2C3007280, 2017M3D1A1040692, 2021R1A5A1084921, and 2022M3J7A1084660).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihun Oh.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1224 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S., Patra, K.K. & Oh, J. Morphology Evolution of CuO Supported on CeO2 and Its Role in Electrochemical CO2 Reduction. JOM (2024). https://doi.org/10.1007/s11837-024-06473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06473-x

Navigation