Skip to main content
Log in

A Pathway to Optimal Multivariate Synthesis of Fe2O3-CuO Bimetal Oxide Hybrid Nanoparticles: Transformation Through Mathematical Modelling

  • Interface Engineering and Property Functionalization
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Controlled and multivariate synthesis of Fe2O3-CuO bimetallic oxide nanoparticles is achieved by coprecipitation method with different concentrations of iron and copper oxide, followed by their optimization at specific pH, temperature, and time of addition of reagent. Concentration studies revealed changes in spectral band position to a hyperchromic shift with relevant increase in the concentration of CuO (100%). Hybrids with higher CuO concentration lead to hybrids with smaller size and higher stability. Temperature-dependent synthesis of bimetallic hybrid oxide nanoparticles showed an increase in size at higher temperatures, while at lower temperatures, stable oxide particles are observed. For pH-dependent synthesis, controlled size is observed at higher pH. Increasing the time of addition of reactant for optimized synthesis of bimetallic oxide nanoparticles showed a gradual decrease in size, hence better control. The results of size and zeta potential are transformed by the application of probability distribution function and grow-decay model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. H. Watanabe, and Y. Koyasu, Appl. Catal. A Gen. 194, 479 (2000).

    Article  Google Scholar 

  2. N.H. Wilson, M. Ragothaman, and T. Palanisamy, ACS Appl. Nano Mater. 4, 4055 (2021).

    Article  CAS  Google Scholar 

  3. L. Kuai, J. Geng, C. Chen, E. Kan, Y. Liu, Q. Wang, and B. Geng, Angew. Chem. Int. Ed. 53, 7547 (2014).

    Article  CAS  Google Scholar 

  4. E.A. Redina, O.A. Kirichenko, A.A. Shesterkina, and L.M. Kustov, Pure Appl. Chem. 92, 989 (2020).

    Article  CAS  Google Scholar 

  5. R.D. Smith, M.S. Prévot, R.D. Fagan, Z. Zhang, P.A. Sedach, M.K.J. Siu, S. Trudel, and C.P. Berlinguette, Science 340, 60 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. A. Indra, P.W. Menezes, N.R. Sahraie, A. Bergmann, C. Das, M. Tallarida, D. Schmeißer, P. Strasser, and M. Driess, J. Am. Chem. Soc. 136, 17530 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. P. Srinoi, Y.-T. Chen, V. Vittur, M.D. Marquez, and T.R. Lee, Appl. Sci. 8, 1106 (2018).

    Article  Google Scholar 

  8. F.F. Tao, S. Zhang, L. Nguyen, and X. Zhang, Chem. Soc. Rev. 41, 7980 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. S. Pradhan, F. Di Stasio, Y. Bi, S. Gupta, S. Christodoulou, A. Stavrinadis, and G. Konstantatos, Nat. Nanotechnol. 14, 72 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. M. Govindasamy, S. Shanthi, E. Elaiyappillai, S.-F. Wang, P.M. Johnson, H. Ikeda, Y. Hayakawa, S. Ponnusamy, and C. Muthamizhchelvan, Electrochim. Acta 293, 328 (2019).

    Article  CAS  Google Scholar 

  11. A. Vasileff, C. Xu, Y. Jiao, Y. Zheng, and S.-Z. Qiao, Chem 4, 1809 (2018).

    Article  CAS  Google Scholar 

  12. P. Manickam-Periyaraman, J.C. Espinosa, B. Ferrer, S. Subramanian, M. Alvaro, H. Garcia, and S. Navalon, Chem. Eng. J. 393, 124770 (2020).

    Article  CAS  Google Scholar 

  13. S. Mansoori, R. Davarnejad, E.J. Ozumchelouei, and A.F. Ismail, J. Water Process Eng. 39, 101888 (2021).

    Article  Google Scholar 

  14. H.R.A. Hasanjani, and K. Zarei, Microchem. J. 164, 106005 (2021).

    Article  Google Scholar 

  15. M.M. Rahman, A. Ahammad, J.-H. Jin, S.J. Ahn, and J.-J. Lee, Sensors 10, 4855 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. H. Teymourian, A. Salimi, and S. Khezrian, Biosens. Bioelectron. 49, 1 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. J.M. George, A. Antony, and B. Mathew, Microchim. Acta 185, 1 (2018).

    Article  CAS  Google Scholar 

  18. Y. Ma, F. Chen, Q. Yang, Y. Zhong, X. Shu, F. Yao, T. Xie, X. Li, D. Wang, and G. Zeng, J. Environ. Manag. 227, 406 (2018).

    Article  CAS  Google Scholar 

  19. Y. Wang, H. Zhao, and G. Zhao, Appl. Catal. B 164, 396 (2015).

    Article  CAS  Google Scholar 

  20. H. Khani, N. Khandan, M.H. Eikani, and A. Eliassi, Int. J. Hydrog. Energy 48, 6436 (2023).

    Article  CAS  Google Scholar 

  21. A.A. Shesterkina, A.A. Strekalova, E.V. Shuvalova, G.I. Kapustin, O.P. Tkachenko, and L.M. Kustov, Catalysts 11, 625 (2021).

    Article  CAS  Google Scholar 

  22. E. Asenath-Smith, E.K. Ambrogi, E. Barnes, and J.A. Brame, Colloids Surf. A 603, 125179 (2020).

    Article  CAS  Google Scholar 

  23. J. Wang, C. Liu, J. Li, R. Luo, X. Hu, X. Sun, J. Shen, W. Han, and L. Wang, Appl. Catal. B 207, 316 (2017).

    Article  CAS  Google Scholar 

  24. A.J. Shaikh, N. Aman, and M.A. Yameen, Asian Biomed. 13, 149 (2019).

    Article  CAS  Google Scholar 

  25. H.-E. Kim, H.-J. Lee, M.S. Kim, T. Kim, H. Lee, H.-H. Kim, M. Cho, S.-W. Hong, and C. Lee, Environ. Sci. Technol. 53, 2679 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. A. Naghilou, O. Bomati-Miguel, A. Subotic, R. Lahoz, M. Kitzler-Zeiler, C. Radtke, M.A. Rodríguez, and W. Kautek, Ceram. Int. 47, 29363 (2021).

    Article  CAS  Google Scholar 

  27. J. Park, C. Park, K. Lee, and S. Suh, AIP Adv. 10, 115220 (2020).

    Article  CAS  ADS  Google Scholar 

  28. A.J. Shaikh, M. Batool, M.A. Yameen, and A. Waseem, J. Nano Res. 54, 98 (2018).

    Article  CAS  Google Scholar 

  29. M. Jawad, S. Ali, A. Waseem, F. Rabbani, B.A.Z. Amin, M. Bilal, and A.J. Shaikh, Adv. Nano Res. 7, 169 (2019).

    Google Scholar 

  30. H.S. Dehsari, A.H. Ribeiro, B. Ersöz, W. Tremel, G. Jakob, and K. Asadi, CrystEngComm 19, 6694 (2017).

    Article  Google Scholar 

  31. M. Nasrollahzadeh, S.M. Sajadi, Z. Issaabadi, and M. Sajjadi, Interface Science and Technology (Elsevier, Amsterdam, 2019), p81.

    Google Scholar 

  32. I. Nurdin, J. Mater. Sci. Chem. Eng. 4, 35 (2016).

    CAS  Google Scholar 

  33. L.A.P. Gontijo, E. Raphael, D.P.S. Ferrari, J.L. Ferrari, J.P. Lyon, and M.A. Schiavon, Matéria (Rio J.) 25, e12845 (2020).

    Article  Google Scholar 

  34. G. Muralidharan, L. Subramanian, S.K. Nallamuthu, V. Santhanam, and S. Kumar, Ind. Eng. Chem. Res. 50, 8786 (2011).

    Article  CAS  Google Scholar 

  35. G. Marshall, and L. Jonker, Radiography 16, e1 (2010).

    Article  Google Scholar 

  36. F. Driouech, M. Déqué, and A. Mokssit, Clim. Dyn. 32, 1055 (2009).

    Article  Google Scholar 

  37. Z. Hussain, A.Z. Abbasi, R. Ahmad, H. Bukhari, M. Shahzad, F. Sultan, and M. Ali, Appl. Nanosci. 10, 4519 (2020).

    Article  CAS  ADS  Google Scholar 

  38. F. Meyer, H. Schmidt, N. Weiss, and P. Wilson, Mon. Not. R. Astron. Soc. 169, 35 (1974).

    Article  ADS  Google Scholar 

  39. S. Ahmad, M.H. Ayoub, A.M. Khan, A. Waseem, M. Yasir, M.S. Khan, T.M. Bajwa, and A.J. Shaikh, Colloids Surf. A 647, 129057 (2022).

    Article  CAS  Google Scholar 

  40. Z. Hussain, A. Rehman, R. Zeeshan, F. Sultan, T. Hamid, M. Ali, and M. Shahzad, Appl. Nanosci. 10, 5149 (2020).

    Article  CAS  ADS  Google Scholar 

  41. P. Mallick, and B. Dash, Nanosci. Nanotechnol. 3, 130 (2013).

    Google Scholar 

  42. M. Imran, A. Abutaleb, M.A. Ali, T. Ahamad, A.R. Ansari, M. Shariq, D. Lolla, and A. Khan, Mater. Lett. 258, 126748 (2020).

    Article  CAS  Google Scholar 

  43. M.H. Ayoub, S. Ahmad, Z.U. Hassan, A.M. Khan, M. Bilal, A. Waseem, and A.J. Shaikh, J. Appl. Phy. 133, 025303 (2023).

    Article  CAS  ADS  Google Scholar 

  44. Z. Abbasi, W. Saeed, S.M. Shah, S.A. Shahzad, M. Bilal, A.F. Khan, and A.J. Shaikh, Colloids Surf. A 611, 125858 (2021).

    Article  CAS  Google Scholar 

  45. W. Saeed, Z. Abbasi, S. Majeed, S.A. Shahzad, A.F. Khan, and A.J. Shaikh, J. Appl. Phy. 129, 125302 (2021).

    Article  CAS  ADS  Google Scholar 

  46. W. Saeed, Z. Abbasi, M. Bilal, S.H. Shah, A. Waseem, and A.J. Shaikh, Phys. E 147, 115596 (2023).

    Article  CAS  Google Scholar 

  47. K. Bakht, A. Ishaq, A.M. Khan, R.A. Khan, M. Bilal, F. Rabbani, and A.J. Shaikh, J. Nanopart. Res. 25, 210 (2023).

    Article  CAS  ADS  Google Scholar 

  48. M. Mahmoudi, A. Simchi, A. Milani, and P. Stroeve, J. Colloid Interface Sci. 336, 510 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  49. S.M.S. Hosseini, and M.S. Dehaj, J. Taiwan Inst. Chem. Eng. 135, 104381 (2022).

    Article  CAS  Google Scholar 

  50. A.A. Badawy, N.A. Abdelfattah, S.S. Salem, M.F. Awad, and A. Fouda, Biology 10, 233 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. D. Das, B.C. Nath, P. Phukon, and S.K. Dolui, Colloids Surf. B 101, 430 (2013).

    Article  CAS  Google Scholar 

  52. H. Abbasian, D. Ghanbari, and G. Nabiyouni, J. Nanostruct. 3, 429 (2013).

    Google Scholar 

  53. B. Choudhury, M. Dey, and A. Choudhury, Appl. Nanosci. 4, 499 (2014).

    Article  CAS  ADS  Google Scholar 

  54. Z.U. Hassan, Z. Abbas, K. Bakht, M.H. Ayoub, S. Ahmad, A.M. Khan, U. Farooq, M.S. Khan, and A.J. Shaikh, J. Environ. Sci. Health Part B 57, 932 (2022).

    Article  CAS  Google Scholar 

  55. Z. Abbas, F. Agada, A.H. Kamboh, A.M. Khan, U. Farooq, M. Bilal, M. Arshad, and A.J. Shaikh, J. Mater. Res. 37, 1323 (2022).

    Article  CAS  ADS  Google Scholar 

  56. F. Agada, Z. Abbas, K. Bakht, A.M. Khan, U. Farooq, M. Bilal, M. Arshad, A.F. Khan, A.H. Kamboh, and A.J. Shaikh, Opt. Mater. 129, 112538 (2022).

    Article  CAS  Google Scholar 

  57. A. Saleem, F. Agada, M.H. Ayoub, A.M. Khan, R. Sarwar, S.M. Bukhari, A. Zaidi, U. Farooq, and A.J. Shaikh, Colloids Surf. A 664, 131127 (2023).

    Article  CAS  Google Scholar 

  58. J. Son, J. Vavra, and V.E. Forbes, Sci. Total. Environ. 521, 183 (2015).

    Article  PubMed  ADS  Google Scholar 

  59. M. Mohsin, M. Jawad, M.A. Yameen, A. Waseem, S.H. Shah, and A.J. Shaikh, Plasmonics 15, 1599 (2020).

    Article  CAS  Google Scholar 

  60. A.J. Shaikh, F. Rabbani, T.A. Sherazi, Z. Iqbal, S. Mir, and S.A. Shahzad, J. Phy. Chem. A 119, 1108 (2015).

    Article  CAS  Google Scholar 

  61. A.J. Shaikh, ChemistrySelect 1, 1678 (2016).

    Article  CAS  Google Scholar 

  62. M. Cai, Y. Lin, B. Han, C. Liu, and W. Zhang, IEEE Trans. Syst. Man Cybern. Syst. 47, 2444 (2016).

    Google Scholar 

  63. S.J. Wolfe, in Fractional Calculus and Its Applications: Proceedings of the International Conference Held at the University of New Haven, June 1974, (Springer: 2006), pp. 306–316.

  64. P. Sahoo, University of Louisville (2013).

  65. H. Schwegmann, A.J. Feitz, and F.H. Frimmel, J. Colloid Interface Sci. 347, 43 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  66. M.A. Vergés, R. Costo, A. Roca, J. Marco, G. Goya, C. Serna, and M.P. Morales, J. Phy. D Appl. Phys. 41, 134003 (2008).

    Article  ADS  Google Scholar 

  67. A.L. Patterson, Phys. Rev. 56, 978 (1939).

    Article  CAS  ADS  Google Scholar 

  68. A.S. Lanje, S.J. Sharma, R.B. Pode, and R.S. Ningthoujam, Adv. Appl. Sci. Res. 1, 36 (2010).

    CAS  Google Scholar 

  69. K. Khan, A.J. Shaikh, M. Siddiq, T.A. Sherazi, and M. Nawaz, J. Polym. Eng. 36, 287 (2016).

    Article  CAS  Google Scholar 

  70. M. Jawad, A.F. Khan, A. Waseem, A.H. Kamboh, M. Mohsin, S.A. Shahzad, S.H. Shah, S. Mathur, and A.J. Shaikh, Appl. Nanosci. 10, 485 (2020).

    Article  CAS  ADS  Google Scholar 

  71. A.B. Raut, and B.M. Bhanage, ChemistrySelect 2, 10055 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research described in this paper was financially supported by the Higher Education Commission of Pakistan under the National Research Program for Universities with reference no. 20-3369/R&D/HEC/14/978 awarded to Dr. Ahson Jabbar Shaikh (principal investigator) and reference no. 20-14582/NRPU/R&D/HEC/2021 2021 awarded to Dr. Bilal Ahmad Zafar Amin (principal investigator) and Dr. Ahson Jabbar Shaikh (co- principal investigator).

Author information

Authors and Affiliations

Authors

Contributions

Ambreen Sarfraz: Bench work, characterization, and initial draft preparation. Muhammad Usman, Nasira Hussain, Shanza Shafaat: Bench work and characterization. Asad Muhammad Khan: UV–Vis absorbance and fluorescence emission spectroscopic analysis. Zakir Hussain: Mathematical modeling. Bilal Ahmad Zafar Amin: Supervision. Ahson Jabbar Shaikh: Conceptualization, Visualization, Methodology, Investigation, Supervision, Writing, Reviewing, Editing, and Validation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ahson Jabbar Shaikh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 237 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarfraz, A., Usman, M., Hussain, N. et al. A Pathway to Optimal Multivariate Synthesis of Fe2O3-CuO Bimetal Oxide Hybrid Nanoparticles: Transformation Through Mathematical Modelling. JOM (2024). https://doi.org/10.1007/s11837-024-06423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06423-7

Navigation