Skip to main content
Log in

Oxidation Performance of CoCrCuFeMnNix High-Entropy Alloys Prepared via Vacuum Hot Pressing Sintering

  • Environmental Degradation of High Temperature Structural Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

CoCrCuFeMnNix (x = 0 mol, 0.5 mol, 1.0 mol, 1.5 mol, and 2.0 mol, named Ni0, Ni0.5, Ni1.0, Ni1.5, and Ni2.0, respectively) high-entropy alloys (HEAs) were prepared using vacuum hot pressing sintering. The atmospheric oxidation behavior of the alloys was studied using a constant-temperature oxidation discontinuous weighing method. The kinetic curve of the alloys after oxidation at 800°C for 50 h follows a parabolic law. A high Ni content corresponds to a small oxidation weight gain of the alloy. After 50 h of oxidation, the oxidation weight gain and oxidation rate constant Kp value of Ni2.0 alloy are the smallest at 3.03 mg/cm2 and 6.59 × 10−12 g2 cm−4 s−1, respectively. The outer oxide layer of the alloys is composed of loose and porous Mn-containing oxides (Mn4O3 or Mn3O2), and the dense layer is composed of continuous and dense Cr2O3. The increase in Ni content promotes the formation of NiCr2O4 oxides with a spinel structure, inhibits the formation of porous MnO, improves the thermal stability of FCC phase, and weakens the volatilization of Cr2O3, thereby improving the oxidation resistance of HEAs. The oxidation mechanism of the alloys is mainly selective oxidation, which involves the outward diffusion of metal cations and the inward permeation of oxygen ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Can, T.S. Chin, and T.T. Shun, Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  2. S. Ranganathan, Curr. Sci. 85, 1404 (2003).

    Google Scholar 

  3. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014).

    Article  Google Scholar 

  4. Q.S. Pan, L.X. Zhang, R. Feng, Q.H. Lu, K. An, A.C. Chuang, J.D. Poplawsky, P.K. Liaw, and L. Lu, Science 374, 984 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. R.B. Nair, G. Perumal, and A. McDonald, Adv. Eng. Mater. 24, 2101713 (2022).

    Article  CAS  Google Scholar 

  6. J.Y. Pang, T. Xiong, W.F. Yang, H.L. Ge, X.D. Zheng, M. Song, H.W. Zhang, and S.J. Zheng, J. Mater. Sci. Technol. 129, 87 (2022).

    Article  CAS  Google Scholar 

  7. X. Nie, M. Sheng, and A. Mabi, JOM 74, 2665 (2022).

    Article  ADS  CAS  Google Scholar 

  8. X.W. Qiu, Results Phys. 12, 1737 (2019).

    Article  ADS  Google Scholar 

  9. C.L. Wu, S. Zhang, C.H. Zhang, H. Zhang, and S.Y. Dong, Surf. Coat. Technol. 315, 368 (2017).

    Article  CAS  Google Scholar 

  10. X. Xian, L.J. Lin, Z.H. Zhong, C. Zhang, C. Chen, K.J. Song, J.G. Cheng, and Y.C. Wu, Mater. Sci. Eng. A 713, 134–140 (2018).

    Article  CAS  Google Scholar 

  11. X.Y. Zhou, J. Chen, R.G. Ding, H.Y. Wu, S.D. Lu, J.H. He, and H.G. Pan, Mater. Sci. Eng. A 873, 144951 (2023).

    Article  CAS  Google Scholar 

  12. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Mater. Sci. Eng. A 454–455, 260 (2007).

    Article  Google Scholar 

  13. X.L. Yan, H. Guo, W. Yang, S.J. Pang, Q. Wang, Y. Liu, P.K. Liaw, and T. Zhang, J. Alloys Compd. 860, 158436 (2021).

    Article  CAS  Google Scholar 

  14. A. Kumar, A.K. Swarnakar, A. Basu, and M. Chopkar, J. Alloys Compd. 748, 889 (2018).

    Article  CAS  Google Scholar 

  15. J.M. Zhu, H.F. Zhang, H.M. Fu, A.M. Wang, H. Li, and Z.Q. Hu, J. Alloys Compd. 497, 52 (2010).

    Article  CAS  Google Scholar 

  16. U. Sunkari, S.R. Reddy, S. Chatterjee, and P.P. Bhattacharjee, Mater. Lett. 2019(248), 119 (2019).

    Article  Google Scholar 

  17. Y.C. Liao, T.H. Li, P.H. Tsai, J.S.C. Jang, K.C. Hsieh, C.Y. Chen, J.C. Huang, H.J. Wu, Y.C. Lo, C.W. Huang, and I.Y. Tsao, Intermetallics 117, 106673 (2020).

    Article  CAS  Google Scholar 

  18. J.J. Feng, S. Gao, K. Han, Y.D. Miao, J.Q. Qi, F.X. Wei, Y.J. Ren, Z.Z. Zhan, Y.W. Sui, Z. Sun, and P. Cao, Trans. Nonferr. Met. Soc. China 31, 1049–1058 (2021).

    Article  CAS  Google Scholar 

  19. N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, and O.N. Senkov, J. Alloys Compd. 3, 170 (2015).

    Article  Google Scholar 

  20. L.G. Cao, X.H. Wang, Y.M. Wang, L.L. Zhang, and Y. Cui, Appl. Phys. A Mater. Sci. Process. 125, 699 (2019).

    Article  ADS  Google Scholar 

  21. X.W. Qiu and C.G. Liu, J. Alloys Compd. 553, 216 (2013).

    Article  CAS  Google Scholar 

  22. L. Jiang, Z.Q. Cao, J.C. Jie, J.J. Zhang, Y.P. Lu, T.M. Wang, and T.J. Li, J. Alloys Compd. 649, 585 (2015).

    Article  CAS  Google Scholar 

  23. K.A. Christofidou, T.P. McAuliffe, P.M. Mignanelli, H.J. Stone, and N.G. Jones, J. Alloys Compd. 770, 285 (2019).

    Article  CAS  Google Scholar 

  24. C.C. Juan, C.Y. Hus, C.W. Tsai, W.R. Wang, T.S. Sheu, J.W. Yeh, and S.K. Chen, Intermetallics 32, 401 (2013).

    Article  CAS  Google Scholar 

  25. Y. Dong, D.X. Qiao, H.Z. Zhang, Y.P. Lu, T.M. Wang, and T.J. Li, Mater. Sci. Forum 849, 40 (2016).

    Article  Google Scholar 

  26. J.H. Pi, Y. Pan, H. Zhang, and L. Zhang, Mater. Sci. Eng. A 534, 228 (2012).

    Article  CAS  Google Scholar 

  27. Y.Y. Liu, Z. Chen, Y.Z. Chen, J.C. Shi, Z.Y. Wang, S. Wang, and F. Liu, Vacuum 169, 108837 (2019).

    Article  ADS  CAS  Google Scholar 

  28. F. Chang, B.J. Cai, C. Zhang, B. Huang, S. Li, and P.Q. Dai, Surf. Coat. Technol. 359, 132 (2019).

    Article  CAS  Google Scholar 

  29. T.M. Bulter, J.P. Alfano, R.L. Martens, and M.L. Weaver, JOM 67, 246 (2015).

    Article  ADS  Google Scholar 

  30. J. Dabrowa, G. Cieślak, M. Stygar, K. Mroczka, K. Berent, T. Kulik, and M. Danielewski, Intermetallics 84, 52 (2017).

    Article  CAS  Google Scholar 

  31. D. Huang, J.S. Lu, Y.X. Zhuang, C.X. Tian, and Y.B. Li, Corros. Sci. 158, 108088 (2019).

    Article  CAS  Google Scholar 

  32. Z.Y. Ding, B.X. Cao, J.H. Luan, and Z.B. Jiao, Corros. Sci. 184, 109365 (2021).

    Article  CAS  Google Scholar 

  33. F. Müller, B. Gorr, H.J. Christ, J. Müller, B. Butz, H. Chen, A. Kauffmann, and M. Heilmaier, Corros. Sci. 159, 108161 (2019).

    Article  Google Scholar 

  34. Y.K. Cao, Y. Liu, B. Liu, W.D. Zhang, J.W. Wang, and M. Du, Trans. Nonferr. Met. Soc. China 29, 1476 (2019).

    Article  CAS  Google Scholar 

  35. S. Sheikh, M.K. Bijaksana, A. Motallebzadeh, S. Shafeie, A. Lozinko, L. Gan, T.K. Tsao, U. Klement, D. Canadinc, H. Murakami, and S. Guo, Intermetallics 97, 58 (2018).

    Article  CAS  Google Scholar 

  36. C.C. Tang, H. Shi, A. Jianu, A. Weisenburger, G. Victor, M. Grosse, G. Müller, H.J. Seifert, and M. Steinbrück, Corros. Sci. 192, 109809 (2021).

    Article  CAS  Google Scholar 

  37. F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, and U.R. Kattner, Calphad 45, 1 (2014).

    Article  Google Scholar 

  38. F. Otto, Y. Yang, H. Bei, and E.P. George, Acta Mater. 61, 2628 (2013).

    Article  ADS  CAS  Google Scholar 

  39. S.M. Oh and S.I. Hong, Mater. Chem. Phys. 210, 120 (2018).

    Article  CAS  Google Scholar 

  40. X.W. Qiu, J. Alloys Compd. 555, 246 (2013).

    Article  CAS  Google Scholar 

  41. J.L. Zhou, Y.H. Cheng, Y.X. Chen, and X.B. Liang, Int. J. Refract. Met. Hard Mater. 105, 105836 (2022).

    Article  CAS  Google Scholar 

  42. S. Salifu and P.A. Olubambi, Int. J. Lightweight Mater. Manuf. https://doi.org/10.1016/j.ijlmm.2023.08.001 (2023).

    Article  Google Scholar 

  43. B.F. Zhang, R.F. Zhao, B. Ren, A.Y. Jiang, C. Chen, J.X. Liu, and Y.J. Zhou, Materials 16, 3179 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. R.F. Zhao, A.Y. Jiang, B. Ren, C. Chen, and J.X. Liu, Mater. Corros. 74, 1076 (2023).

    Article  CAS  Google Scholar 

  45. X. Chen, Y.W. Sui, J.Q. Qi, Y.Z. He, and F.X. Wei, J. Mater. Res. 32, 2109 (2017).

    Article  ADS  CAS  Google Scholar 

  46. T.K. Tsao, A.C. Yeh, C.M. Kuo, and H. Murakami, Entropy 18, 62 (2016).

    Article  ADS  Google Scholar 

  47. J. Dąbrowa, G. Cieślak, M. Stygar, K. Mroczka, K. Berent, T. Kulik, and M. Danielewski, Intermetallics 84, 52 (2017).

    Article  Google Scholar 

  48. F.H. Stott, G.C. Wood, and J. Stringer, Oxid. Met. 44, 113 (1995).

    Article  CAS  Google Scholar 

  49. C.C. Tang, H. Shi, A. Jianu, A. Weisenburger, G. Victor, M. Grosse, G. Müller, H. Jürgen Seifert, and M. Steinbrück, Corros. Sci. 192, 109809 (2021).

    Article  CAS  Google Scholar 

  50. K.S. Nanjundaswamy and M.N. Sankarshanamurthy, Bull. Mater. Sci. 7, 459 (1985).

    Article  CAS  Google Scholar 

  51. P.K. Huang, J.W. Yeh, T.T. Shun, and S.K. Chen, Adv. Eng. Mater. 6, 74 (2004).

    Article  CAS  Google Scholar 

  52. K. Wu, C.C. Li, F.P. Cheng, K.P. Chu, R.T. Huang, L.W. Tsay, and J.J. Kai, Corros. Sci. 121, 116 (2017).

    Article  Google Scholar 

  53. Z.P. Tong, H. Liu, and J. Jiao, Opt. Laser Technol. 130, 106326 (2020).

    Article  CAS  Google Scholar 

  54. X.X. Huang, J.S. Li, G.H. Bai, and H.Z. Fu, Rare Met. Mater. Eng. 39, 1908 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Scientific Research Project Plan of Colleges and Universities in Henan Province (Grant Nos. 22A430014 and 21A460020), Henan Province Science and Technology Research Plan Project (Grant Nos. 232102230043 and 232102231007), Doctoral Training Fund of Henan University of Engineering (Grant No. D2021007), Postgraduate Education Reform Project of Henan Province (2021SJGLX074Y), and Postgraduate Education Reform and Quality Improvement Project of Henan Province (YJS2022JD50).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruifeng Zhao or Bo Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Zhao, R., Ren, B. et al. Oxidation Performance of CoCrCuFeMnNix High-Entropy Alloys Prepared via Vacuum Hot Pressing Sintering. JOM (2024). https://doi.org/10.1007/s11837-024-06419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06419-3

Navigation