Skip to main content
Log in

Classification of the Mechanisms of Liquid Metal Embrittlement Via Machine Learning

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Predicting liquid metal embrittlement (LME) between arbitrary liquid–solid metal pairs is particularly challenging; conflicting reports in the literature have prevented the creation of generalized predictive models. Recent advances have shifted the LME paradigm from binary—embrittlement either occurs or does not occur—to multiple, potentially cooperative mechanisms. In this work, a dataset comprising the vast majority of LME experiments reported in the literature was created for training machine learning (ML) models to predict LME under the new paradigm. Several ML classification techniques, including k-nearest neighbors (KNN) and decision tree classifiers, were trained to predict the occurrence and mechanism of LME for a given liquid–solid pair. Specifically, a KNN 1-vs-1 classifier was > 80% accurate in predicting LME, surpassing any prior models in the literature. Additionally, the decision tree models shed light on the features most important for predicting LME and identifying the mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Code Availability

The LME dataset and machine learning code as used in this work are available on the authors’ GitHub repository at https://github.com/MONSTERgroup/LME-Machine-Learning/tree/paper. Future updates to the code may be available in the main branch of this repository.

Notes

  1. https://github.com/MONSTERgroup/LME-Machine-Learning/tree/paper.

References

  1. J.E. Norkett, M.D. Dickey, and V.M. Miller, Metall. Mater. Trans. A 52, 2158 (2021).

    Article  Google Scholar 

  2. K. Fehrenbacher, Battery Startup Ambri Lays Off Staff, Pushes Back Commercial Sales (Fortune, 2015) https://fortune.com/2015/09/11/liquid-metal-battery-layoffs/

  3. B.L. Spatocco, P.J. Burke, and D.R. Sadoway, Low-Temperature Liquid Metal Batteries for Grid-scaled Storage, US Patent US 10177405B2 (2019) https://patents.google.com/patent/US10177405B2/en

  4. W. Rostoker, Embrittlement by Liquid Metals (Reinhold Publishing Corporation, Washington, 1960).

    Google Scholar 

  5. M.I. Chaevskii, Fiz.-Khim. Mekh. Mater. 1, 637 (1965).

    Google Scholar 

  6. M.J. Kelley and N.S. Stoloff, Metall. Trans. A 6, 159 (1975).

    Google Scholar 

  7. Pliny the Elder, in The Natural History. ed. by J. Bostock (Taylor and Francis, London, 1855).

  8. D. Gorse-Pomonti and V. Russier, J. Non-Cryst. Solids 353, 3600 (2007).

    Article  Google Scholar 

  9. J. Van den Bosch and A. Almazouzi, J. Nuclear Mater. 385, 504 (2009).

    Article  Google Scholar 

  10. D. Gorse, T. Auger, J.B. Vogt, I. Serre, A. Weisenburger, A. Gessi, P. Agostini, C. Fazio, A. Hojna, F. Di Gabriele, J. Van Den Bosch, G. Coen, A. Almazouzi, and M. Serrano, J. Nuclear Mater. 415, 284 (2011).

    Article  Google Scholar 

  11. X. Gong, P. Marmy, and Y. Yin, J. Nuclear Mater. 509, 401 (2018).

    Article  Google Scholar 

  12. P. Hosemann, D. Frazer, E. Stergar, and K. Lambrinou, Scr. Mater. 118, 37 (2016).

    Article  Google Scholar 

  13. A. Hojna, F. Di Gabriele, and J. Klecka, J. Nuclear Mater. 472, 163 https://doi.org/10.1016/j.jnucmat.2015.08.048 (2016).

    Article  Google Scholar 

  14. E. Serag, B. Caers, P. Schuurmans, S. Lucas, and E. Haye, Surf. Coat. Technol. 441, 128542 https://doi.org/10.1016/j.surfcoat.2022.128542 (2022).

    Article  Google Scholar 

  15. C. Ye, J.-B. Vogt, and I. Proriol Serre, Mater. Sci. Eng. A 608, 242 https://doi.org/10.1016/j.msea.2014.04.082 (2014).

    Article  Google Scholar 

  16. H. Kang, L. Cho, C. Lee, and B.C. De Cooman, Metall. Mater. Trans. A 47, 2885 (2016).

    Article  Google Scholar 

  17. J.-H. Kang, S.-H. Hong, J. Kim, and S.-J. Kim, Mater. Sci. Eng. A 793, 139996 https://doi.org/10.1016/j.msea.2020.139996 (2020).

    Article  Google Scholar 

  18. D.R. Lesuer, J.B. Bergin, S.A. McInturff, and B.A. Kuhn, Microstruct. Sci. 9, 256 (1981).

    Google Scholar 

  19. C.F. Old and P. Trevena, Met. Sci. 15, 281 (1981).

    Article  Google Scholar 

  20. Y. Ikeda, R. Yuan, A. Chakraborty, H. Ghassemi-Armaki, J.M. Zuo, and R. Maaß, Mater. Today Adv. 13, 100196 https://doi.org/10.1016/j.mtadv.2021.100196 (2022).

    Article  Google Scholar 

  21. J. Bessone, Corros. Sci. 48, 4243 (2006).

    Article  Google Scholar 

  22. J.E. Norkett, B.T. Anthony, and V.M. Miller, Metall. Mater. Trans. A 54, 2791 https://doi.org/10.1007/s11661-023-07056-2 (2023).

    Article  Google Scholar 

  23. M. Watkins, K.L. Johnson, and N.N. Breyer, in Proc. 4th Interam. Conf. Mater. Technol. ( Caracas, Venezuela, 1975), pp. 31–38.

  24. P.C. Hancock and M.B. Ives, Can. Metall. Q. 10, 207 (1971).

    Article  Google Scholar 

  25. J.E. Norkett, On the Multiplicity of Mechanisms of Liquid Metal Embrittlement, Ph.D. thesis, University of Florida (2023).

  26. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, J. Mach. Learn. Res. 12, 2825 (2011).

    MathSciNet  Google Scholar 

  27. L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux, inECML PKDD Workshop: Languages for Data Mining and Machine Learning (2013), pp. 108–122.

  28. S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, and G. Ceder, Comput. Mater. Sci. 68, 314 https://doi.org/10.1016/j.commatsci.2012.10.028 (2013).

    Article  Google Scholar 

  29. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, APL Materials 1, 011002 https://doi.org/10.1063/1.4812323 (2013).

    Article  Google Scholar 

  30. S.P. Ong, L. Wang, B. Kang, and G. Ceder, Chem. Mater. 20, 1798 https://doi.org/10.1021/cm702327g (2008).

    Article  Google Scholar 

  31. E. Fix, Discriminatory Analysis: Nonparametric Discrimination: Consistency Properties, Tech. Rep. 4 (USAF School of Aviation Medicine, Randolph Field, Texas, 1951).

  32. T. Cover and P. Hart, IEEE Trans. Inf. Theory 13, 21 https://doi.org/10.1109/TIT.1967.1053964 (1967).

    Article  Google Scholar 

  33. P. Cunningham and S.J. Delany, ACM Comput. Surv.https://doi.org/10.1145/3459665 (2021).

    Article  Google Scholar 

  34. L. Breiman, Mach. Learn. 45, 5 (2001).

    Article  Google Scholar 

  35. G. Louppe, Understanding Random Forests: From Theory to Practice, Ph.D. thesis, Université de Liège (2014).

  36. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, New York, 2006).

    Google Scholar 

  37. M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera, Pattern Recognit. 44, 1761 https://doi.org/10.1016/j.patcog.2011.01.017 (2011).

    Article  Google Scholar 

  38. J.H. Friedman, Ann. Stat. 29, 1189 (2001).

    Article  Google Scholar 

  39. J.H. Friedman, Comput. Stat. Data Anal. 38, 367 https://doi.org/10.1016/S0167-9473(01)00065-2 (2002).

    Article  Google Scholar 

  40. J. Bergstra and Y. Bengio, J. Mach. Learn. Res. 13, 281 https://doi.org/10.5555/2188385.2188395 (2012).

    Article  MathSciNet  Google Scholar 

  41. J.C. Platt, Probabilities for SV machines, in Advances in Large-Margin Classifiers. ed. by A.J. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans (The MIT Press, Cambridge, 2000), pp. 61–73. https://doi.org/10.7551/mitpress/1113.003.0008.

    Chapter  Google Scholar 

  42. M.M. Chaevskii and V.V. Popovich, Fiz.-Khim. Mekh. Mater. 2, 143 (1966).

    Google Scholar 

  43. A. Geron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3rd edn. (O’Reilly Media, Sebastopol, 2022).

    Google Scholar 

  44. C.M. Preece and A.R. Westwood, Trans. Am. Soc. Met. 62, 418 (1969).

    Google Scholar 

  45. C.M. Preece and A.R.C. Westwood, in Proc. 2nd Int. Conf. Fract. ed. by P.L. Pratt (Chapman and Hall, London, 1969), p. 439.

  46. C.M. Walter and L.R. Kelman, J. Nuclear Mater. 6, 281 https://doi.org/10.1016/0022-3115(62)90005-3 (1962).

    Article  Google Scholar 

  47. K. Yamamoto, K. Arakawa, and H. Koizumi, in Proc. 13th Int. Conf. Fract. (Beijing, China, 2013).

  48. M.D. Dickey, Adv. Mater. 29, 1606425 (2017).

    Article  Google Scholar 

  49. C.E. Price and R.S. Fredell, Metall. Trans. A 17, 889 (1986).

    Article  Google Scholar 

  50. T. Mae and S. Hori, J. Jpn. Inst. Light Met. 34, 3 (1984).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Mr. Alec Chu, whose efforts initiated the present work. This work was supported by the National Science Foundation Award Number DMR-2011166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Begley.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begley, B.A., Norkett, J.E., Frampton, C. et al. Classification of the Mechanisms of Liquid Metal Embrittlement Via Machine Learning. JOM 76, 885–896 (2024). https://doi.org/10.1007/s11837-023-06326-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06326-z

Navigation