Skip to main content
Log in

High-Performance Fe-Al Double Hydroxide Prepared by Red Mud for Arsenic Removal

  • Interface Engineering and Property Functionalization
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A novel Fe-Al double hydroxides adsorbent (DHs-FeAl) was synthesized utilizing red mud (RM), and then the arsenic(As)V adsorption characteristics of DHs-FeAl were evaluated. The iron-containing acid leaching residue (Fe = 63.55%) generated during the production of DHs-FeAl can be used directly as a raw material for iron metallurgy. Optimized conditions for As(V) adsorption were observed to be pH = 4.0–9.0, 1.0 g/L adsorbent dosage, 50 mg/L initial As(V) concentration, 720 min, and ambient temperature. The adsorption capacity of DH-FeAl for As(V) was up to 117.73 mg/g, as determined by fitting adsorption equilibrium data using the Langmuir–Freundlich isothermal model (R2 > 99%). According to the adsorption thermodynamic and kinetic results, the As(V) adsorption process, controlled by coupled external and internal diffusion, was dominated by physisorption and supplemented by inner-sphere complexation and hydroxide ion exchange. When the DHs-FeAl was regenerated with an NaOH-NaCl binary solution after adsorbing As(V), the adsorbent still had a good adsorption capacity for the first three cycles. Based on the results, it was possible and efficient to adsorb As(V) using DHs-FeAl. The research complied with the notions of reusing resources and treating waste with waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Q e :

Apparent adsorbed amount of As(V) (mg/g)

C 0 :

Initial concentration of As(V) (mg/L)

C e :

Equilibrium concentration of As(V) (mg/L)

V :

The volume of the solution (L)

m :

Dosage of the adsorbent (g)

%R e :

The percentage removal of As (V)

Q max :

The capacity of saturated adsorption (mg/g)

K L :

Langmuir constant (L/mg)

K F :

Freundlich affinity coefficient ((mg/g)/(mg/L)1/n)

n :

Freundlich constants

K d :

Thermodynamic equilibrium constant

ΔG θ :

Standard Gibbs free energy (kJ mol1)

ΔH θ :

Standard enthalpy (kJ mol1)

ΔS θ :

Standard entropy (J mol1 K1)

R :

Gas constant (8.314 J mol1 K1)

T :

Temperature (K)

Q t :

Adsorption capacity at a certain time (mg/g)

k 1 :

The rate constant of the PFO (min−1)

k 2 :

The rate constant of the PSO (g/mg min)

Q fast :

Adsorption capacity during fast phase (mg/g)

k fast :

Fast phase constant (min−1)

k slow :

Slow phase constant (min−1)

C :

Webber–Morris constant

k p :

Webber–Morris rate constant (mg g1 min1/2)

%R d :

Desorption percentage

C d :

As(V) concentration in regeneration eluent (mg/g)

C w :

As(V) concentration in wash water (mg/g)

References

  1. A. Deditius, Rev. Mineral. Geochem. 79, 1–16 https://doi.org/10.2113/econgeo.110.7.1905 (2015).

    Article  Google Scholar 

  2. P. Drahota and M. Filippi, Environ. Int. 35, 1243–1255 https://doi.org/10.1016/j.envint.2009.07.004 (2009).

    Article  Google Scholar 

  3. R.D. Koons and C.A. Peters, J. Anal. Toxicol. 18, 36–40 https://doi.org/10.1093/jat/18.1.36 (1994).

    Article  Google Scholar 

  4. B.S. Rathi and P.S. Kumar, J. Hazard. Mater. 418, 126299 https://doi.org/10.1016/j.jhazmat.2021.126299 (2021).

    Article  Google Scholar 

  5. M. Argos, T. Kalra, and P.J. Rathouz, Lancet 376, 252–258 https://doi.org/10.1016/S0140-6736(10)60481-3 (2010).

    Article  Google Scholar 

  6. K. Hayat, S. Menhas, J. Bundschuh, and H.J. Chaudhary, J. Clean. Prod. 151, 427–438 https://doi.org/10.1016/j.jclepro.2017.03.084 (2017).

    Article  Google Scholar 

  7. J.V. Bothe and P.W. Brown, Environ. Sci. Technol. 33, 3806–3811 https://doi.org/10.1021/es980998m (1999).

    Article  Google Scholar 

  8. C.B. Tabelin, R.D. Corpuz, T. Iarashi, M. Ito, N. Hiroyoshi, and M. Villacorte-Tabelin, Chemosphere 233, 946–953 https://doi.org/10.1016/j.chemosphere.2019.06.020 (2019).

    Article  Google Scholar 

  9. Z.L. Tang, X.C. Tang, H.N. Liu, and Z.Y. Xiao, Sep. Purif. Technol. 295, 121276 https://doi.org/10.1016/j.seppur.2022.121276 (2022).

    Article  Google Scholar 

  10. J.M. Byrne and A. Kappler, Microb. Biotechnol. 10, 1098–1101 https://doi.org/10.1111/1751-7915.12742 (2017).

    Article  Google Scholar 

  11. D.E. Giles, M. Mohapatra, and T.B. Issa, J. Environ. Manage. 92, 3011–3022 https://doi.org/10.1016/j.jenvman.2011.07.018 (2011).

    Article  Google Scholar 

  12. Y. Mamindy-Pajany, C. Hurel, N. Marmier, and M. Roméoet, Desalination 281, 93–99 https://doi.org/10.1016/j.desal.2011.07.046 (2011).

    Article  Google Scholar 

  13. M.C.S. Faria, R.S. Rosemberg, C.A. Bomfeti, D.S. Monteiro, F. Barbosa, L.C.A. Oliveira, M. Rodriguez, M.C. Pereira, and J.L. Rodrigues, Chem. Eng. J. 237, 47–54 https://doi.org/10.1016/j.cej.2013.10.006 (2014).

    Article  Google Scholar 

  14. T.K. Das and A.N. Bezbaruah, Sci. Total. Environ. 764, 142914 https://doi.org/10.1016/j.scitotenv.2020.142914 (2020).

    Article  Google Scholar 

  15. M. Pigna, G.S.R. Krishnamurti, and A. Violante, Soil Sci. Soc. Am. J. 70, 2017–2027 https://doi.org/10.2136/sssaj2005.0373 (2006).

    Article  Google Scholar 

  16. N. Inchaurrondo, C. di Luca, F. Mori, A. Pintar, G. Žerjav, M. Valiente, and C. Palet, J. Environ. Chem. Eng. 7, 102901 https://doi.org/10.1016/j.jece.2019.102901 (2019).

    Article  Google Scholar 

  17. S.H. Wang, H.X. Jin, Y. Deng, and Y.D. Xiao, J. Clean. Prod. 289, 125136 https://doi.org/10.1016/j.jclepro.2020.125136 (2021).

    Article  Google Scholar 

  18. Z.B. Liu and H.X. Li, Hydrometallurgy 155, 29–43 https://doi.org/10.1016/j.hydromet.2015.03.018 (2015).

    Article  Google Scholar 

  19. Y. Liu, C. Lin, and Y. Wu, J. Hazard. Mater. 146, 255–261 https://doi.org/10.1016/j.jhazmat.2006.12.015 (2007).

    Article  Google Scholar 

  20. D.D. Frey, F. Engelhardt, and E.M. Greitzer, Res. Eng. Des. 14, 65–74 https://doi.org/10.1007/s00163-002-0026-9 (2003).

    Article  Google Scholar 

  21. A.A. Khan and R.P. Singh, Colloids Surf. 24, 33–42 https://doi.org/10.1016/0166-6622(87)80259-7 (1987).

    Article  Google Scholar 

  22. B. Liu, Z. Liu, H. Wu, S. Pan, X. Cheng, Y. Sun, and Y. Xu, Sci. Total. Environ. 742, 141508 https://doi.org/10.1016/j.scitotenv.2020.140508 (2020).

    Article  Google Scholar 

  23. Y. Yu, L. Yu, K. Shih, and J.P. Chen, J. Colloid Interface Sci. 521, 252–260 https://doi.org/10.1016/j.jcis.2018.02.046 (2018).

    Article  Google Scholar 

  24. K. Kitahama, R. Kiriyama, and Y. Baba, B Struct. Sci. Cryst. Eng. Mater. 31, 322–324 https://doi.org/10.1107/S056774087500266X (1975).

    Article  Google Scholar 

  25. K.L. Muedi, H.G. Brink, V. Masindi, and J.P. Maree, J. Hazard. Mater. 414, 125491 https://doi.org/10.1016/j.jhazmat.2021.125491 (2021).

    Article  Google Scholar 

  26. S. Ghosh, R. Prabhakar, and S. Samadder, Clean Technol. Environ. Policy 21, 121–138 https://doi.org/10.1007/s10098-018-1622-3 (2019).

    Article  Google Scholar 

  27. Y.K. Penke, G. Anantharaman, J. Ramkumar, and K.K. Kar, J. Hazard. Mater. 364, 519–530 https://doi.org/10.1016/j.jhazmat.2018.10.069 (2019).

    Article  Google Scholar 

  28. B.N. Mahato and T. Krithiga, Mater. Today: Proc. 17, 303–312 https://doi.org/10.1016/j.matpr.2019.06.434 (2019).

    Article  Google Scholar 

  29. F. Wu, C. Zhao, G. Qu, Z. Yan, Y. Zeng, B. Chen, Y. Hu, W. Ji, Y. Li, and H. Tang, RSC Adv. 11, 6577–6585 https://doi.org/10.1039/d0ra09339d (2021).

    Article  Google Scholar 

  30. J. Ju, Z. He, R. Liu, H. Liu, X. Zhang, and J. Qu, Environ. Eng. Sci. 32(7), 613–621 https://doi.org/10.1089/ees.2014.0245 (2014).

    Article  Google Scholar 

  31. X. Yu, Y. Wei, C. Liu, J. Ma, H. Liu, S. Wei, W. Deng, J. Xiang, and S. Luo, Chemosphere 222, 258–266 https://doi.org/10.1016/j.chemosphere.2019.01.130 (2019).

    Article  Google Scholar 

  32. X. Ge, Y. Ma, X. Song, G. Wang, H. Zhang, Y. Zhang, and H. Zhao, ACS Appl. Mater. Interfaces 9, 13480–13490 https://doi.org/10.1021/acsami.7b01275 (2017).

    Article  Google Scholar 

  33. N. Jain and A. Maiti, Environ. Sci. Pollut. Res. 28, 3230–3242 https://doi.org/10.1007/s11356-020-10745-9 (2021).

    Article  Google Scholar 

  34. V.K. Tchieda, E. D’Amato, A. Chiavola, M. Parisi, A. Chianese, M. Amamra, and A. Kanaev, Clean 44, 496–505 https://doi.org/10.1002/clen.201400599 (2016).

    Article  Google Scholar 

  35. A. Maiti, J.K. Basu, and S. De, Chem. Eng. J. 191, 1–12 https://doi.org/10.1016/j.cej.2010.01.031 (2012).

    Article  Google Scholar 

  36. S.I. Lyubchik, A.I. Lyubchik, O.L. Galushko, L.P. Tikhonova, J. Vital, I.M. Fonseca, and S.B. Lyubchik, Colloids Surf A Physicochem Eng Asp 242, 151–158 https://doi.org/10.1016/j.colsurfa.2004.04.066 (2004).

    Article  Google Scholar 

  37. C.K. Jain, D.C. Singhal, and M.K. Sharma, J. Hazard. Mater. 114, 231–239 https://doi.org/10.1016/j.jhazmat.2004.09.001 (2004).

    Article  Google Scholar 

  38. H.N. Tran, S.J. You, A. Hosseini-Bandegharaei, and H.P. Chao, Water Res. 120, 88–116 https://doi.org/10.1016/j.watres.2017.04.014 (2017).

    Article  Google Scholar 

  39. T. Mahlangu, R. Das, L.K. Abi, M. Onyango, S.S. Ray, and A. Maity, Chem. Eng. J. 360, 423–434 https://doi.org/10.1016/j.cej.2018.11.231 (2019).

    Article  Google Scholar 

  40. Y. Zhang, X. She, X. Gao, C. Shan, C. Shan, and B. Pan, Environ. Sci. Technol. 53, 365–372 https://doi.org/10.1021/acs.est.8b05177 (2019).

    Article  Google Scholar 

  41. G. Nie, B. Pan, S. Zhang, and B. Pan, J. Phys. Chem. C 117, 6201–6209 https://doi.org/10.1021/jp3119154 (2013).

    Article  Google Scholar 

  42. Q. Hu, Y. Liu, X. Gu, and Y. Zhao, Chemosphere 181, 328–336 https://doi.org/10.1016/j.chemosphere.2017.04.049 (2017).

    Article  Google Scholar 

  43. J.R.T. Johnson and I. Panas, Phys. Chem. Chem. Phys. Chem Chem Phys 3(24), 5482–5488 https://doi.org/10.1039/B106318A (2001).

    Article  Google Scholar 

  44. M. Karanac, M. Đolić, Z. Veličković, A. Kapidžić, V. Ivanovski, M. Mitrić, and A. Marinković, J. Environ. Manage. 224, 263–276 https://doi.org/10.1016/j.jenvman.2018.07.051 (2018).

    Article  Google Scholar 

  45. Y. Babaee, C.N. Mulligan, and M.S. Rahaman, J. Chem. Technol. Biotechnol. 93, 63–71 https://doi.org/10.1002/jctb.5320 (2018).

    Article  Google Scholar 

  46. P. Singh, P. Pal, P. Mondal, G. Saravanan, P. Nagababu, S. Majumdar, N. Labhsetwar, and S. Bhowmick, Chem. Eng. J. 412, 128667 https://doi.org/10.1016/j.cej.2021.128667 (2021).

    Article  Google Scholar 

  47. G.S. Murugesan, M. Sathishkumar, and K. Swaminathan, Bioresour. Technol. 97, 483–487 https://doi.org/10.1016/j.biortech.2005.03.008 (2006).

    Article  Google Scholar 

  48. S.J. Mills, A.G. Christy, J.M.R. Génin, T. Kameda, and F. Colombo, Mineral. Mag. 76, 1289–1336 https://doi.org/10.1180/minmag.2012.076.5.10 (2012).

    Article  Google Scholar 

  49. T. Türk, T. Boyraz, and İ Alp, Environ. Geochem. Health 42, 1335–1345 https://doi.org/10.1007/s10653-019-00420-5 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Grant No. 21276286 and No. 21476268) and the Fundamental Research Funds for the Central South University (No.2023ZZTS0456).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xincun Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 2576 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Tang, X., Tang, Z. et al. High-Performance Fe-Al Double Hydroxide Prepared by Red Mud for Arsenic Removal. JOM (2023). https://doi.org/10.1007/s11837-023-06301-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-023-06301-8

Navigation