Skip to main content
Log in

Development of Nb-Doped BiFeO3 via Hydrothermal Method for Photocatalytic Degradation of Rhodamine B (RhB) Dye

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Bismuth ferrite, or BiFeO3, is a highly promising material within the realm of multiferroics due to its stable structures, small band gap and cost-effectiveness. The present study employed a facile and eco-friendly approach to synthesize high-purity niobium-doped and -undoped bismuth ferrite (BiFeO3) nanostructure with hydrothermal method. The findings of the study indicate that the produced Nb-doped BFO exhibited nanoflake morphology as verified by SEM analysis. The observed trend in the photocatalytic efficiency of the material was found to be closely associated with the change in the band gap energy, which decreased from 2.36 eV to 2.03 eV with niobium dopant. The present study assessed the photocatalytic performance of both doped and pristine BiFeO3 for the decomposition of rhodamine B (RhB) under visible source of light radiation. The photocatalytic behavior of niobium-doped BiFeO3 for the mineralization of RhB was observed with increase upon contact time to visible light. The observed phenomenon can be ascribed to the effective dissociation of photogenerated electron (e) and hole (h+) pairs, as well as the significant absorption of visible light, as opposed to the pristine BiFeO3. The scavenger analysis revealed that hydroxyl species, radical and holes species play a significant role in the photocatalytic mineralization of RhB. Later research revealed that the kinetics of the photocatalytic RhB decomposition followed the Langmuir–Hinshelwood model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. M. Ahmadian and M. Jaymand, Coord. Chem. Rev. 486, 215152 https://doi.org/10.1016/J.CCR.2023.215152 (2023).

    Article  Google Scholar 

  2. M.D. Khan, A. Singh, M.Z. Khan, S. J. Water Process Eng. 53, 103579 https://doi.org/10.1016/J.JWPE.2023.103579 (2023).

    Article  Google Scholar 

  3. M. Bhattu and J. Singh, Chemosphere 321, 138072 https://doi.org/10.1016/J.CHEMOSPHERE.2023.138072 (2023).

    Article  Google Scholar 

  4. L. Sawunyama, O.A. Oyewo, N. Seheri, S.A. Onjefu, and D.C. Onwudiwe, Surf. Interfaces 38, 102787 https://doi.org/10.1016/J.SURFIN.2023.102787 (2023).

    Article  Google Scholar 

  5. M.R. Islam, M.S. Hasan Khan, M.R. Hasan Mojumder, and S. Ahmad, RSC Adv. 13, 1943 https://doi.org/10.1039/D2RA07365J (2023).

    Article  Google Scholar 

  6. S. Jin, J. Wu, J. Jiang, R. Wang, B. Zhou, L. Wang, Q. Hu, and A. Zhou, J. Mater. Chem. A. 11, 5851 https://doi.org/10.1039/D3TA00435J (2023).

    Article  Google Scholar 

  7. L. Liccardo, M. Bordin, P.M. Sheverdyaeva, M. Belli, P. Moras, A. Vomiero, and E. Moretti, Adv. Funct. Mater. https://doi.org/10.1002/ADFM.202212486 (2023).

    Article  Google Scholar 

  8. S.-H. Chiou, H.-C. Ho, H.-T. Liao, F.-Y. Tsai, C.-W. Tsao, Y.-J. Hsu, and C.-H. Hsueh, J. Photochem. Photobiol. A Chem. 443, 114816 https://doi.org/10.1016/J.JPHOTOCHEM.2023.114816 (2023).

    Article  Google Scholar 

  9. S.R. Nagella, R. Vijitha, B. Ramesh Naidu, K.S.V. Krishna Rao, C.S. Ha, and K. Venkateswarlu, Nano Energy 111, 108402 https://doi.org/10.1016/J.NANOEN.2023.108402 (2023).

    Article  Google Scholar 

  10. H.A. Vignolo-González, A. Gouder, S. Laha, V. Duppel, S. Carretero-Palacios, A. Jiménez-Solano, T. Oshima, P. Schützendübe, and B.V. Lotsch, Adv. Energy Mater. 13, 2203315 https://doi.org/10.1002/AENM.202203315 (2023).

    Article  Google Scholar 

  11. H.M. Ali, F. Arabpour Roghabadi, and V. Ahmadi, Sol. Energy 255, 99 https://doi.org/10.1016/J.SOLENER.2023.03.032 (2023).

    Article  Google Scholar 

  12. P.R. Kharangarh, N.M. Ravindra, G. Singh, and S. Umapathy, Energy Stor. 5, e390 https://doi.org/10.1002/EST2.390 (2023).

    Article  Google Scholar 

  13. P.R. Kharangarh, and G. Singh, ECS J. Solid State Sci. Technol. 12, 031006 https://doi.org/10.1149/2162-8777/ACC095 (2023).

    Article  Google Scholar 

  14. P.R. Kharangarh, N.M. Ravindra, R. Rawal, A. Singh, and V. Gupta, J. Alloys Compd. 876, 159990 https://doi.org/10.1016/J.JALLCOM.2021.159990 (2021).

    Article  Google Scholar 

  15. P.R. Kharangarh, N.M. Ravindra, G. Singh, and S. Umapathy, J. Energy Stor. 55, 105388 https://doi.org/10.1016/J.EST.2022.105388 (2022).

    Article  Google Scholar 

  16. T.J. Park, S. Sambasivan, D.A. Fischer, W.S. Yoon, J.A. Misewich, and S.S. Wong, J. Phys. Chem. C 112, 10359 https://doi.org/10.1021/JP801449P/ASSET/IMAGES/LARGE/JP-2008-01449P_0007.JPEG (2008).

    Article  Google Scholar 

  17. A. Haruna, I. Abdulkadir, and S.O. Idris, Heliyon 6, e03237 https://doi.org/10.1016/J.HELIYON.2020.E03237 (2020).

    Article  Google Scholar 

  18. P.R. Kharangarh, S. Umapathy, and G. Singh, ECS J. Solid State Sci. Technol. 7, M29 https://doi.org/10.1149/2.0041803JSS/XML (2018).

    Article  Google Scholar 

  19. X. Liao, T.T. Li, H.T. Ren, Z. Mao, X. Zhang, J.H. Lin, and C.W. Lou, Ceram. Int. 47, 10786 https://doi.org/10.1016/J.CERAMINT.2020.12.195 (2021).

    Article  Google Scholar 

  20. M.A. Basith, N. Yesmin, and R. Hossain, RSC Adv. 8, 29613 https://doi.org/10.1039/C8RA04599B (2018).

    Article  Google Scholar 

  21. P.R. Kharangarh, S. Umapathy, and G. Singh, J. Appl. Phys. https://doi.org/10.1063/1.4991693/145075 (2017).

    Article  Google Scholar 

  22. P.R. Kharangarh, S. Umapathy, and G. Singh, Appl. Surf. Sci. 449, 363 https://doi.org/10.1016/J.APSUSC.2018.01.026 (2018).

    Article  Google Scholar 

  23. R. Gupta, S.P. Singh, R. Walia, V. Kumar, and V. Verma, J. Alloys Compd. 908, 164602 https://doi.org/10.1016/J.JALLCOM.2022.164602 (2022).

    Article  Google Scholar 

  24. Y. Lin, Q. Jiang, and H. Deng, J. Solid State Chem. 303, 122450 https://doi.org/10.1016/J.JSSC.2021.122450 (2021).

    Article  Google Scholar 

  25. S.M. Karvinen, Ind. Eng. Chem. Res. 42, 1035 https://doi.org/10.1021/IE020358Z/ASSET/IMAGES/LARGE/IE020358ZF00005.JPEG (2003).

    Article  Google Scholar 

  26. J. Zhou, H. Zhang, A. Chang, and Y. Zhao, J. Mater. Sci. Mater. Electron. 31, 9595 https://doi.org/10.1007/S10854-020-03502-8/FIGURES/8 (2020).

    Article  Google Scholar 

  27. G. Arya, J. Yogiraj, N.S. Negi, J. Shah, and R.K. Kotnala, J. Alloys Compd. 723, 983 https://doi.org/10.1016/J.JALLCOM.2017.06.325 (2017).

    Article  Google Scholar 

  28. Y. Tie, S.Y. Ma, S.T. Pei, Q.X. Zhang, K.M. Zhu, R. Zhang, X.H. Xu, T. Han, and W.W. Liu, Sens. Actuators B Chem. 308, 127689 https://doi.org/10.1016/J.SNB.2020.127689 (2020).

    Article  Google Scholar 

  29. J.B. Hedrick, S.P. Sinha, and V.D. Kosynkin, J. Alloys Compd. 250, 467 https://doi.org/10.1016/S0925-8388(96)02824-1 (1997).

    Article  Google Scholar 

  30. S. Phanichphant, A. Nakaruk, K. Chansaenpak, and D. Channei, Sci. Rep. 9(1), 1 https://doi.org/10.1038/s41598-019-52589-5 (2019).

    Article  Google Scholar 

  31. R. Jose, P. Vineetha, M.A. Rafiq, and K. Venkata Saravanan, RSC Adv. 8, 34437 https://doi.org/10.1039/C8RA06621C (2018).

    Article  Google Scholar 

  32. R.V. Lakshmi, P. Bera, M. Hiremath, V. Dubey, A.K. Kundu, and H.C. Barshilia, Phys. Chem. Chem. Phys. 24, 5462 https://doi.org/10.1039/D1CP05501A (2022).

    Article  Google Scholar 

  33. H. Xie, C. Chen, P. He, G. Mu, K. Wang, C. Yang, S. Chai, N. Wang, and C. Ge, Appl. Surf. Sci. 600, 154146 https://doi.org/10.1016/J.APSUSC.2022.154146 (2022).

    Article  Google Scholar 

  34. M. Zzaman, J.B. Franklin, A. Kumar, R. Dawn, V.K. Verma, R. Shahid, M.K. Gupta, K. Amemiya, Y. Miura, R. Meena, A. Kandasami, and V.R. Singh, J. Alloys Compd. 918, 165515 https://doi.org/10.1016/J.JALLCOM.2022.165515 (2022).

    Article  Google Scholar 

  35. S. Han, L. Hu, N. Gao, A.A. Al-Ghamdi, and X. Fang, Adv. Funct. Mater. 24, 3725 https://doi.org/10.1002/ADFM.201400012 (2014).

    Article  Google Scholar 

  36. G. Tian, H. Fu, L. Jing, and C. Tian, J. Hazard. Mater. 161, 1122 https://doi.org/10.1016/J.JHAZMAT.2008.04.065 (2009).

    Article  Google Scholar 

  37. M. Aadil, S. Zulfiqar, H. Sabeeh, M.F. Warsi, M. Shahid, I.A. Alsafari, and I. Shakir, Ceram. Int. 46, 17836 https://doi.org/10.1016/J.CERAMINT.2020.04.090 (2020).

    Article  Google Scholar 

  38. N. Zhang, D. Chen, F. Niu, S. Wang, L. Qin, and Y. Huang, Sci. Rep. 6(1), 1 https://doi.org/10.1038/srep26467 (2016).

    Article  Google Scholar 

  39. S. Zhu, S. Liang, Q. Gu, L. Xie, J. Wang, Z. Ding, and P. Liu, Appl. Catal. B Environ. 119–120, 146 https://doi.org/10.1016/J.APCATB.2012.02.020 (2012).

    Article  Google Scholar 

  40. A. Amirulsyafiee, M.M. Khan, M.Y. Khan, A. Khan, and M.H. Harunsani, Solid State Sci. 131, 106950 https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2022.106950 (2022).

    Article  Google Scholar 

  41. M. Abdi, V. Mahdikhah, and S. Sheibani, Opt. Mater. (Amst) 102, 109803 https://doi.org/10.1016/J.OPTMAT.2020.109803 (2020).

    Article  Google Scholar 

  42. P.I. Uma, U.S. Shenoy, and D.K. Bhat, Appl. Surf. Sci. Adv. 15, 100408 https://doi.org/10.1016/J.APSADV.2023.100408 (2023).

    Article  Google Scholar 

  43. S. Hmamouchi, A. El Yacoubi, and B.C. El Idrissi, Heliyon 8, e08953 https://doi.org/10.1016/J.HELIYON.2022.E08953 (2022).

    Article  Google Scholar 

  44. V. Jose, V. Jose, E. Kuruvilla, M. Arunkumar, A. Segar Deepi, G. Srikesh, and A. Samson Nesaraj, Inorg. Chem. Commun. 156, 111205 https://doi.org/10.1016/J.INOCHE.2023.111205 (2023).

    Article  Google Scholar 

  45. C.M. Khor, M.M. Khan, A. Khan, M.Y. Khan, and M.H. Harunsani, Optik (Stuttg). 267, 169732 https://doi.org/10.1016/J.IJLEO.2022.169732 (2022).

    Article  Google Scholar 

  46. M.M. Aljohani, S.D. Al-Qahtani, M. Alshareef, M.G. El-Desouky, A.A. El-Bindary, N.M. El-Metwaly, and M.A. El-Bindary, Process. Saf. Environ. Prot. 172, 395 https://doi.org/10.1016/J.PSEP.2023.02.036 (2023).

    Article  Google Scholar 

  47. G. Vignesh, G. Rajesh, and M.K. Kumar, J. Mater. Sci. Mater. Electron. 32, 27044 https://doi.org/10.1007/S10854-021-07076-X/FIGURES/15 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Deanship of Scientific Research at Najran University for funding this work under the Research Priorities and Najran Research funding program, grant code (NU/NRP/SERC/12/12).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed to the work and agree to the submission.

Corresponding author

Correspondence to Salma Aman.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seliem, A.F., Mohammed, A.Y.A., Attia, A. et al. Development of Nb-Doped BiFeO3 via Hydrothermal Method for Photocatalytic Degradation of Rhodamine B (RhB) Dye. JOM 76, 408–417 (2024). https://doi.org/10.1007/s11837-023-06225-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06225-3

Navigation