Skip to main content
Log in

Effect of Post-Welding Treatment on Corrosion Behavior of Laser and Gas Tungsten Arc-Welded (Fe50Mn30Co10Cr10)99C1 Interstitial High-Entropy Alloy

  • Microstructures and Mechanical Behavior of High-entropy Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The influence of post-welding heat treatment on the surface and corrosion properties of the interstitial high-entropy alloy (Fe50Mn30Cr10Co10)99C1 has been examined using gas tungsten arc welding (GTAW) and laser welding. The as-welded and post-weld heat-treated samples were characterized using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Face-centered cubic (FCC) and hexagonal close-packed (HCP) structures were present in the base metal. There was no change in the phases after welding and post-heat treatment. After laser and GTAW, a small reduction in hardness (25 HV) was noticed. Following both laser and GTAW processes, the base metal's corrosion resistance dropped. However, heat treatment applied after the weld brought the resistance back to almost base metal levels (0.002 mm/year). The development of Mn oxides on the surface, which minimizes the micro-segregation of Cr and generates a uniform Cr oxides layer, is primarily responsible for the increased corrosion resistance in the post-welded samples. This layer also exhibits superior passivation and corrosion resistance. The study clearly demonstrates that, in Mn-containing high-entropy alloys, it is important to suppress elemental Mn content on the surface for improved corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213–218 https://doi.org/10.1016/j.msea.2003.10.257 (2004).

    Article  Google Scholar 

  2. J.W. Yeh, Ann. Chim. Sci. Des Mater. 31, 633–648 https://doi.org/10.3166/acsm.31.633-648 (2006).

    Article  Google Scholar 

  3. X. Chang, M. Zeng, K. Liu, and L. Fu, Adv. Mater. 32, 1–22 https://doi.org/10.1002/adma.201907226 (2020).

    Article  Google Scholar 

  4. P. Agrawal, S. Shukla, S. Gupta, P. Agrawal, and R.S. Mishra, Appl. Mater. Today 21, 100853 https://doi.org/10.1016/j.apmt.2020.100853 (2020).

    Article  Google Scholar 

  5. A. Verma, P. Tarate, A.C. Abhyankar, M.R. Mohape, D.S. Gowtam, V.P. Deshmukh, and T. Shanmugasundaram, Scr. Mater. 161, 28–31 https://doi.org/10.1016/j.scriptamat.2018.10.007 (2019).

    Article  Google Scholar 

  6. B. Cantor, Entropy 16(9), 4749–4768 https://doi.org/10.3390/e16094749 (2014).

    Article  Google Scholar 

  7. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Acta Mater. 62, 105–113 https://doi.org/10.1016/j.actamat.2013.09.037 (2014).

    Article  Google Scholar 

  8. W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, and Z.P. Lu, Scr. Mater. 68, 526–529 https://doi.org/10.1016/j.scriptamat.2012.12.002 (2013).

    Article  Google Scholar 

  9. Y.H. Zhang, Y. Zhuang, A. Hu, J.J. Kai, and C.T. Liu, Scr. Mater. 130, 96–99 https://doi.org/10.1016/j.scriptamat.2016.11.014 (2017).

    Article  Google Scholar 

  10. A. Gali, and E.P. George, Intermetallics 39, 74–78 https://doi.org/10.1016/j.intermet.2013.03.018 (2013).

    Article  Google Scholar 

  11. A. Sourav, S. Yebaji, and S. Thangaraju, Mater. Sci. Eng. A 793, 139877 https://doi.org/10.1016/j.msea.2020.139877 (2020).

    Article  Google Scholar 

  12. S. Kumar, A. Sourav, B.S. Murty, A. Chelvane, and S. Thangaraju, J. Alloys Compd. 919, 165820 https://doi.org/10.1016/j.jallcom.2022.165820 (2022).

    Article  Google Scholar 

  13. S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang, and Z.P. Lu, Intermetallics 93, 269–273 https://doi.org/10.1016/j.intermet.2017.10.004 (2018).

    Article  Google Scholar 

  14. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science 345, 1153–1158 https://doi.org/10.1126/science.1254581 (2014).

    Article  Google Scholar 

  15. G.V.S. Kumar, K.R. Mangipudi, G.V.S. Sastry, L.K. Singh, S. Dhanasekaran, and K. Sivaprasad, Sci. Rep. 10, 1–9 https://doi.org/10.1038/s41598-019-57208-x (2020).

    Article  Google Scholar 

  16. Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, and D. Raabe, Acta Mater. 94, 124–133 https://doi.org/10.1016/j.actamat.2015.04.014 (2015).

    Article  Google Scholar 

  17. P. Chauhan, S. Chopra, and S. Thangaraju, Adv. Eng. Mater. 21, 9 https://doi.org/10.1002/adem.201900251 (2019).

    Article  Google Scholar 

  18. C.W. Lu, Y.S. Lu, Z.H. Lai, H.W. Yen, and Y.L. Lee, J. Alloys Compd. 842, 155824 https://doi.org/10.1016/j.jallcom.2020.155824 (2020).

    Article  Google Scholar 

  19. B. Chen, S. Li, H. Zong, X. Ding, J. Sun, and E. Ma, Proc. Natl. Acad. Sci. USA. 117, 16199–161206 https://doi.org/10.1073/pnas.1919136117 (2020).

    Article  Google Scholar 

  20. N.T.C. Nguyen, P. Asghari-Rad, P. Sathiyamoorthi, A. Zargaran, C.S. Lee, and H.S. Kim, Nat. Commun. 11, 1–7 https://doi.org/10.1038/s41467-020-16601-1 (2020).

    Article  Google Scholar 

  21. C. Lee, G. Kim, Y. Chou, B.L. Musicó, M.C. Gao, K. An, G. Song, C. Chou, V. Keppens, W. Chen, and P.K. Liaw, Sci. Adv. 6, 37 https://doi.org/10.1126/sciadv.aaz4748 (2020).

    Article  Google Scholar 

  22. G. Li, M. Liu, S. Lyu, M. Nakatani, R. Zheng, C. Ma, Q. Li, and K. Ameyama, Scr. Mater. 191, 196–201 https://doi.org/10.1016/j.scriptamat.2020.09.036 (2021).

    Article  Google Scholar 

  23. K. Gan, D. Yan, S. Zhu, and Z. Li, Acta Mater. 206, 116633 https://doi.org/10.1016/j.actamat.2021.116633 (2021).

    Article  Google Scholar 

  24. A.J. Zaddach, C. Niu, C.C. Koch, and D.L. Irving, JOM 65, 1780–1789 https://doi.org/10.1007/s11837-013-0771-4 (2013).

    Article  Google Scholar 

  25. F. He, Z. Wang, Q. Wu, D. Chen, T. Yang, J. Li, J. Wang, C.T. Liu, and J.J. Kai, Scr. Mater. 155, 134–138 https://doi.org/10.1016/j.scriptamat.2018.06.002 (2018).

    Article  Google Scholar 

  26. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Nature 534, 227–230 https://doi.org/10.1038/nature17981 (2016).

    Article  Google Scholar 

  27. S. Huang, H. Huang, W. Li, D. Kim, S. Lu, X. Li, E. Holmström, S.K. Kwon, and L. Vitos, Nat. Commun. 9, 1 https://doi.org/10.1038/s41467-018-04780-x (2018).

    Article  Google Scholar 

  28. Z. Li, F. Körmann, B. Grabowski, J. Neugebauer, and D. Raabe, Acta Mater. 136, 262–270 https://doi.org/10.1016/j.actamat.2017.07.023 (2017).

    Article  Google Scholar 

  29. Y.F. Shen, X.X. Dong, X.T. Song, and N. Jia, Sci. Rep. 9, 1–9 https://doi.org/10.1038/s41598-019-44105-6 (2019).

    Article  Google Scholar 

  30. J.H. Zhou, Y.F. Shen, and N. Jia, Int. J. Miner. Metall. Mater. 28, 335–348 https://doi.org/10.1007/s12613-020-2121-1 (2021).

    Article  Google Scholar 

  31. N. Liu, C. Chen, I. Chang, P. Zhou, and X. Wang, Materials (Basel). 11, 1–11 https://doi.org/10.3390/ma11081290 (2018).

    Article  Google Scholar 

  32. Z. Fu, L. Jiang, J.L. Wardini, B.E. MacDonald, H. Wen, W. Xiong, D. Zhang, Y. Zhou, T.J. Rupert, W. Chen, and E.J. Lavernia, Sci. Adv. 4, eaat8712 https://doi.org/10.1126/sciadv.aat8712 (2018).

    Article  Google Scholar 

  33. Z. Wang, I. Baker, Z. Cai, S. Chen, J.D. Poplawsky, and W. Guo, Acta Mater. 120, 228–239 https://doi.org/10.1016/j.actamat.2016.08.072 (2016).

    Article  Google Scholar 

  34. M.V. Klimova, D.G. Shaysultanov, R.S. Chernichenko, V.N. Sanin, N.D. Stepanov, S.V. Zherebtsov, and A.N. Belyakov, Mater. Sci. Eng. A 740–741, 201–210 https://doi.org/10.1016/j.msea.2018.09.113 (2019).

    Article  Google Scholar 

  35. Z. Li, C.C. Tasan, H. Springer, B. Gault, and D. Raabe, Sci. Rep. 7, 40704 https://doi.org/10.1038/srep40704 (2017).

    Article  Google Scholar 

  36. Z. He, N. Jia, H. Yan, Y. Shen, M. Zhu, X. Guan, X. Zhao, S. Jin, G. Sha, Y. Zhu, and C.T. Liu, Int. J. Plast. 139, 102965 https://doi.org/10.1016/j.ijplas.2021.102965 (2021).

    Article  Google Scholar 

  37. M. Traversier, P. Mestre-Rinn, N. Peillon, E. Rigal, X. Boulnat, F. Tancret, J. Dhers, and A. Fraczkiewicz, Mater. Sci. Eng. A 804, 140725 https://doi.org/10.1016/j.msea.2020.140725 (2021).

    Article  Google Scholar 

  38. Y. Lu, A. Mazilkin, T. Boll, N. Stepanov, S. Zherebtzov, G. Salishchev, É. Ódor, T. Ungar, E. Lavernia, H. Hahn, and Y. Ivanisenko, Materialia 16, 101059 https://doi.org/10.1016/j.mtla.2021.101059 (2021).

    Article  Google Scholar 

  39. M. Klimova, D. Shaysultanov, A. Semenyuk, S. Zherebtsov, G. Salishchev, and N. Stepanov, J. Alloys Compd. 849, 156633 https://doi.org/10.1016/j.jallcom.2020.156633 (2020).

    Article  Google Scholar 

  40. L.B. Chen, R. Wei, K. Tang, J. Zhang, F. Jiang, L. He, and J. Sun, Mater. Sci. Eng. A 716, 150–156 https://doi.org/10.1016/j.msea.2018.01.045 (2018).

    Article  Google Scholar 

  41. M. Wang, Z. Li, and D. Raabe, Acta Mater. 147, 236–246 https://doi.org/10.1016/j.actamat.2018.01.036 (2018).

    Article  Google Scholar 

  42. Z. Li, Acta Mater. 164, 400–412 https://doi.org/10.1016/j.actamat.2018.10.050 (2019).

    Article  Google Scholar 

  43. M. Klimova, D. Shaysultanov, A. Semenyuk, S. Zherebtsov, and N. Stepanov, J. Alloys Compd. 851, 156839 https://doi.org/10.1016/j.jallcom.2020.156839 (2021).

    Article  Google Scholar 

  44. M. Song, R. Zhou, J. Gu, Z. Wang, S. Ni, and Y. Liu, Appl. Mater. Today 18, 1–6 https://doi.org/10.1016/j.apmt.2019.100498 (2020).

    Article  Google Scholar 

  45. Z. Wang, and I. Baker, Mater. Sci. Eng. A 693, 101–110 https://doi.org/10.1016/j.msea.2017.03.099 (2017).

    Article  Google Scholar 

  46. Z. He, N. Jia, H. Wang, H. Yan, and Y. Shen, J. Mater. Sci. Technol. 86, 158–170 https://doi.org/10.1016/j.jmst.2020.12.079 (2021).

    Article  Google Scholar 

  47. L. Guo, X. Ou, S. Ni, Y. Liu, and M. Song, Mater. Sci. Eng. A 746, 356–362 https://doi.org/10.1016/j.msea.2019.01.050 (2019).

    Article  Google Scholar 

  48. L. Chen, T. Cao, R. Wei, K. Tang, C. Xin, F. Jiang, and J. Sun, Mater. Sci. Eng. A 772, 138661 https://doi.org/10.1016/j.msea.2019.138661 (2020).

    Article  Google Scholar 

  49. M.Y. He, Y.F. Shen, N. Jia, and P.K. Liaw, Appl. Mater. Today 25, 101162 https://doi.org/10.1016/j.apmt.2021.101162 (2021).

    Article  Google Scholar 

  50. S.A.A. Shams, J.W. Bae, J.N. Kim, H.S. Kim, T. Lee, and C.S. Lee, J. Mater. Sci. Technol. 115, 115–128 https://doi.org/10.1016/j.jmst.2021.10.010 (2022).

    Article  Google Scholar 

  51. J. Li, X. Meng, L. Wan, and Y. Huang, J. Manuf. Process. 68, 293–331 https://doi.org/10.1016/j.jmapro.2021.05.042 (2021).

    Article  Google Scholar 

  52. D. Bandhu, and K. Abhishek, Mater. Manuf. Process 36(12), 1384–1402 https://doi.org/10.1080/10426914.2021.1906897 (2021).

    Article  Google Scholar 

  53. G.P. Yadav, D. Bandhu, B.V. Krishna, N. Gupta, P. Jha, J.J. Vora, S. Mishra, K.K. Saxena, K.H. Salem, and S.S. Abdullaev, J. Adhes. Sci. Technol. 1(22), 0169–4243 https://doi.org/10.1080/01694243.2023.2223367 (2023).

    Article  Google Scholar 

  54. B. Wang, S.J. Hu, L. Sun, and T. Freiheit, J. Manuf. Syst. 56, 373–391 https://doi.org/10.1016/j.jmsy.2020.06.020 (2020).

    Article  Google Scholar 

  55. R. Sokkalingam, K. Sivaprasad, M. Duraiselvam, V. Muthupandi, and K.G. Prashanth, J. Alloys Compd. 817, 153163 https://doi.org/10.1016/j.jallcom.2019.153163 (2020).

    Article  Google Scholar 

  56. R. Sokkalingam, K. Venkatesan, S. Sree-Sabari, S. Malarvizhi, and V. Balasubramanian, Int. J. Res. Eng. Technol. 3, 316–320 https://doi.org/10.15623/ijret.2014.0323069 (2014).

    Article  Google Scholar 

  57. M.A. Derakhshi, J. Kangazian, and M. Shamanian, Vacuum 161, 371–374 https://doi.org/10.1016/j.vacuum.2019.01.005 (2019).

    Article  Google Scholar 

  58. S. Yebaji, A. Saurav, P. Chauhan, B.S. Murty, B. Patil, A. Babu, V. Poddar, and T. Shanmugasundaram, J. Mater. Eng. Perform. 32, 3668–3677 https://doi.org/10.1007/s11665-022-07332-z (2023).

    Article  Google Scholar 

  59. C.M. Lin, and H.L. Tsai, Intermetallics 19, 288–294 https://doi.org/10.1016/j.intermet.2010.10.008 (2011).

    Article  Google Scholar 

  60. R. Sokkalingam, S. Mishra, S.R. Cheethirala, V. Muthupandi, and K. Sivaprasad, Metall. Mater. Trans. A 48, 3630–3634 https://doi.org/10.1007/s11661-017-4140-8 (2017).

    Article  Google Scholar 

  61. H. Luo, Z. Li, A.M. Mingers, and D. Raabe, Corros. Sci. 134, 131–139 https://doi.org/10.1016/j.corsci.2018.02.031 (2018).

    Article  Google Scholar 

  62. Y.L. Chou, Y.C. Wang, J.W. Yeh, and H.C. Shih, Corros. Sci. 52, 3481–3491 https://doi.org/10.1016/j.corsci.2010.06.025 (2010).

    Article  Google Scholar 

  63. A. Rodriguez, J.H. Tylczak, and M. Ziomek-Moroz, ECS Trans. 77, 741 https://doi.org/10.1149/07711.0741ecst (2017).

    Article  Google Scholar 

  64. Q. Ye, K. Feng, Z. Li, F. Lu, R. Li, J. Huang, and Y. Wu, Appl. Surf. Sci. 396, 1420–1426 https://doi.org/10.1016/j.apsusc.2016.11.176 (2017).

    Article  Google Scholar 

  65. K.M. Hsu, S.H. Chen, and C.S. Lin, Corros. Sci. 190, 109694 https://doi.org/10.1016/j.corsci.2021.109694 (2021).

    Article  Google Scholar 

  66. Y. Shi, L. Collins, R. Feng, C. Zhang, N. Balke, P.K. Liaw, and B. Yang, Corros. Sci. 133, 120–131 https://doi.org/10.1016/j.corsci.2018.01.030 (2018).

    Article  Google Scholar 

  67. Y. Zhang, X. Jiang, Y. Fang, Y. Fang, B. Liu, H. Sun, Z. Shao, and T. Song, Mater. Today Commun. 28, 102503 https://doi.org/10.1016/j.mtcomm.2021.102503 (2021).

    Article  Google Scholar 

  68. N. Meena, V. Srivastava, P. Srinivas, M. Gajendra, D.S. Gowtam, A.G. Rao, and N. Prabhu, Trans Indian Inst Met 76(7), 1741–1750 https://doi.org/10.1007/s12666-022-02845-6 (2023).

    Article  Google Scholar 

  69. A. Verma, and S. Thangaraju, Mater. Sci. Tech. 38–14, 1127–1133 https://doi.org/10.1080/02670836.2022.2071398 (2022).

    Article  Google Scholar 

  70. S. Yebaji, L. Chauhan, K. Chakravarthy, A. Verma, H. Natu, S.G. Dommeti, and S. Thangaraju, SSRN Electron. J. https://doi.org/10.2139/SSRN.4241504 (2022).

    Article  Google Scholar 

  71. Z. Li, and D. Raabe, JOM 69, 2099–2106 https://doi.org/10.1007/s11837-017-2540-2 (2017).

    Article  Google Scholar 

  72. H. Nam, C. Park, C. Kim, H. Kim, and N. Kang, Sci. Technol. Weld. Join. 23, 420–427 https://doi.org/10.1080/13621718.2017.1405564 (2018).

    Article  Google Scholar 

  73. A. Verma, H. Natu, I. Balasundar, A. Chelvane, V.L. Niranjani, M. Mohape, G. Mahanta, S. Gowtam, and T. Shanmugasundaram, Sci. Technol. Weld. Join. 27–3, 197–203 https://doi.org/10.1080/13621718.2022.2029116 (2022).

    Article  Google Scholar 

  74. H. Murakawa, Handb. Laser Weld. Technol. 2, 374–398 https://doi.org/10.1533/9780857098771.2.374 (2013).

    Article  Google Scholar 

  75. A. Lodh, K. Thool, and I. Samajdar, Trans. Indian Inst. Met. 75, 983–995 https://doi.org/10.1007/s12666-022-02540-6 (2022).

    Article  Google Scholar 

  76. B. Kim, S. Kim, and H. Kim, Adv. Mater. Sci. Eng. 2018, 7638274 https://doi.org/10.1155/2018/7638274 (2018).

    Article  Google Scholar 

  77. Y.-S. Lu, C.-W. Lu, Y.-T. Lin, H.-W. Yen, and Y.-L. Lee, J. Electrochem. Soc. 167, 081506 https://doi.org/10.1149/1945-7111/ab8de4 (2020).

    Article  Google Scholar 

  78. J. Oliveira, T. Curado, Z. Zeng, J. Lopes, E. Rossinyol, J.M. Park, N. Schell, F. Braz Fernandes, and H.S. Kim, Mater. Des. 189, 108505 https://doi.org/10.1016/j.matdes.2020.108505 (2020).

    Article  Google Scholar 

  79. U. Martin, J. Ress, J. Bosch, and D.M. Bastidas, Appl. Sci. 10, 1–11 https://doi.org/10.3390/app10249104 (2020).

    Article  Google Scholar 

  80. S. Fajardo, I. Llorente, J. Jiménez, N. Calderón, D. Herrán-Medina, J. Bastidas, J. Ress, and D. Bastidas, Appl. Surf. Sci. 513, 145852 https://doi.org/10.1016/j.apsusc.2020.145852 (2020).

    Article  Google Scholar 

  81. D.M. Bastidas, J. Ress, J. Bosch, and U. Martin, Metals. 11, 1–45 https://doi.org/10.3390/met11020287 (2021).

    Article  Google Scholar 

Download references

Acknowledgments

We are very thankful to Dr. C. P. Ramanarayanan, Vice-Chancellor, DIAT (DU) for their constant support. This work is supported by the Naval Research Board, Defence Research and Development Organizations for funding the work through project No. NRB/4003/PG/MAT/501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Shanmugasundaram.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yebaji, S., Sudeep Kumar, T., Verma, A. et al. Effect of Post-Welding Treatment on Corrosion Behavior of Laser and Gas Tungsten Arc-Welded (Fe50Mn30Co10Cr10)99C1 Interstitial High-Entropy Alloy. JOM 75, 5568–5580 (2023). https://doi.org/10.1007/s11837-023-06210-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06210-w

Navigation