Skip to main content
Log in

Identification of Plasticity and Fracture Models for Automotive Extruded Aluminum Parts Using Finite Element Model Updating Algorithm

  • Identification of Anisotropic Constitutive Models for Complex Loading Paths
  • Published:
JOM Aims and scope Submit manuscript

Abstract

For extruded aluminum alloys, the identification of mechanical properties and the corresponding constitutive modeling are very challenging, due to the complex structured part geometry, microstructure variance, difficulty in performing standard testing, and discrepancy between material- and structural-scale deformation. With these challenges, in this study, the plasticity and ductile fracture models for an aluminum extrusion part having a complex cross-sectional shape are identified based on an inverse experimental–numerical approach. In particular, bending experiments in part-scale are employed as alternatives to standard mechanical tests. A single and double finite element model updating scheme are newly suggested and performed to predict plastic hardening behavior and ductile fracture criterion from measured load–displacement curves. To overcome the limited deformation history available at various stress states, a virtual (deformation) path generation method is proposed for calibrating the fracture model. The feasibility of the optimized constitutive models is evaluated through a number of trials with modifications in the optimization process, which are successfully validated through comparison with experiments on load–displacement curves and fracture initiations. Finally, it is confirmed that the proposed inverse identification approach can offer a computationally efficient method for constitutive modeling, with potential applications in various engineering fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Dong, C. Zhang, G. Zhao, Y. Guan, A. Gao, and W. Sun, Mater. Des. 92, 983 (2016).

    Article  Google Scholar 

  2. C. Zhang, C. Wang, R. Guo, G. Zhao, L. Chen, W. Sun, and X. Wang, J. Alloys Compd. 773, 59 (2019).

    Article  Google Scholar 

  3. L. Xu, D. Zhou, C. Xu, H. Zhang, W. Qu, P. Xie, and L. Li, Mater. Today Commun. 34, 105138 (2023).

    Article  Google Scholar 

  4. M. Grediac, F. Pierront, S. Avrilt, and E. Toussaint, Strain 42, 233 (2006).

    Google Scholar 

  5. C. Kim, and M.G. Lee, Int. J. Solids Struct. 233, 111204 (2021).

    Article  Google Scholar 

  6. Z. Wang, J.B. Estrada, E.M. Arruda, and K. Garikipati, J. Mech. Phys. Solids 153, 104474 (2021).

    Article  Google Scholar 

  7. D. P. Nikolov, S. Srivastava, B.A. Abeid, U. M. Scheven, E. M. Arruda, K. Garikipati, and J. B. Estrada, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 380, (2022).

  8. K.T. Kavanagh, and R.W. Clough, Int. J. Solids Struct. 7, 11 (1971).

    Article  Google Scholar 

  9. J. Kajberg, and G. Lindkvist, Int. J. Solids Struct. 41, 3439 (2004).

    Article  Google Scholar 

  10. S. Belhabib, H. Haddadi, M. Gaspérini, and P. Vacher, Int. J. Mech. Sci. 50, 14 (2008).

    Article  Google Scholar 

  11. T. Pottier, F. Toussaint, and P. Vacher, Eur. J. Mech. A/Solids 30, 373 (2011).

    Article  Google Scholar 

  12. S. Cooreman, D. Lecompte, H. Sol, J. Vantomme, and D. Debruyne, Exp. Mech. 48, 421 (2008).

    Article  Google Scholar 

  13. P.A. Prates, A.F.G. Pereira, N.A. Sakharova, M.C. Oliveira, and J.V. Fernandes, Adv. Mater. Sci. Eng. (2016).

  14. T. He, L. Liu, and A. Makeev, Compos. Struct. 184, 337 (2018).

    Article  Google Scholar 

  15. G. Liu, L. Wang, Y. Yi, L. Sun, L. Shi, H. Jiang, and S. Ma, J. Nucl. Mater. 509, 445 (2018).

    Article  Google Scholar 

  16. V. Tvergaard, Int. J. Fract. 18, 237 (1982).

    Article  Google Scholar 

  17. V. Tvergaard and A. Needleman, Acta Metall. 32, 157 (1984).

    Article  Google Scholar 

  18. J. Lemaitre, J. Eng. Mater. Technol. 107, 83 (1985).

    Article  Google Scholar 

  19. M. Cockcroft and D.J. Latham, J. Inst. Met. 96, 33 (1968).

    Google Scholar 

  20. J.R. Rice and D.M. Tracey, J. Mech. Phys. Solids 17, 201 (1969).

    Article  Google Scholar 

  21. Y. Bai and T. Wierzbicki, Int. J. Fract. 161, 1 (2010).

    Article  Google Scholar 

  22. T.B. Stoughton and J.W. Yoon, Int. J. Plast. 27, 440 (2011).

    Article  Google Scholar 

  23. Y. Lou, H. Huh, S. Lim, and K. Pack, Int. J. Solids Struct. 49, 3605 (2012).

    Article  Google Scholar 

  24. D. Mohr and S.J. Marcadet, Int. J. Solids Struct. 67–68, 40 (2015).

    Article  Google Scholar 

  25. T. Belytschko, J.I. Lin, and T. Chen-Shyh, Comput. Methods Appl. Mech. Eng. 42, 225 (1984).

    Article  Google Scholar 

  26. R.P.R. Cardoso, and J.W. Yoon, Comput. Methods Appl. Mech. Eng. 194, 1161 (2005).

    Article  Google Scholar 

  27. K. Pack, T. Tancogne-Dejean, M.B. Gorji, and D. Mohr, Int. J. Solids Struct. 151, 214 (2018).

    Article  Google Scholar 

  28. J.A. Nelder and R. Mead, Comput. J. 7, 308 (1965).

    Article  MathSciNet  Google Scholar 

  29. G. Gu and D. Mohr, Eng. Fract. Mech. 147, 480 (2015).

    Article  Google Scholar 

  30. K. Pack and D. Mohr, Eng. Fract. Mech. 182, 32 (2017).

    Article  Google Scholar 

  31. C.C. Roth and D. Mohr, Int. J. Plast. 56, 19 (2014).

    Article  Google Scholar 

  32. S.J. Marcadet and D. Mohr, Int. J. Plast. 72, 21 (2015).

    Article  Google Scholar 

  33. Y. Bai and T. Wierzbicki, Int. J. Plast. 24, 1071 (2008).

    Article  Google Scholar 

  34. J. Lee, S.J. Kim, H. Park, H.J. Bong, and D. Kim, J. Mater. Process. Technol. 255, 584 (2018).

    Article  Google Scholar 

  35. S. Basak, C. Kim, W. Jeong, Y. Il Jung, and M.G. Lee, Int. J. Mech. Sci. 219, (2022).

  36. F.A. Potra and S.J. Wright, J. Comput. Appl. Math. 124, 281 (2000).

    Article  MathSciNet  Google Scholar 

  37. M. Dunand, A.P. Maertens, M. Luo, and D. Mohr, Int. J. Plast. 36, 34 (2012).

    Article  Google Scholar 

  38. M. Luo, M. Dunand, and D. Mohr, Int. J. Plast. 32–33, 36 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by Hyundai Motors Group, which is greatly appreciated. The Institute of Engineering Research at Seoul National University provided research facilities for this work. M.G.L. appreciates the support by the National Research Foundation of Korea (NRF, Korea) (No. 2022R1A2C2009315) and the support by the Ministry of Trade, Industry & Energy (MOTIE, Korea) (1415185590, 20022438). J.Y.W. appreciates the support by the National Research Foundation of Korea (NRF, Korea) (No. 2021M3H4A6A01045764).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Gyu Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, J.Y., Hong, S., Nam, B. et al. Identification of Plasticity and Fracture Models for Automotive Extruded Aluminum Parts Using Finite Element Model Updating Algorithm. JOM 75, 5479–5493 (2023). https://doi.org/10.1007/s11837-023-06164-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06164-z

Navigation