Skip to main content
Log in

Corrosion Inhibition of 3003 Al Alloy by Aqueous Vanadate

  • Surface Engineering for Improved Corrosion or Wear Resistance
  • Published:
JOM Aims and scope Submit manuscript

Abstract

3XXX series Al alloys belong to the high-corrosion-resistant Al alloys. One of their main applications is in heat exchange systems. However, under a harsh tropical marine environment, the serving lifetime of a 3003 Al alloy-based heat exchange system will be shortened by corrosion. Therefore, the corrosion protection of 3XXX series Al alloys needs to be paid much attention. To address this issue, an investigation was undertaken to study NaVO3 as a possible corrosion inhibitor for the 3003 Al alloy. The cathodic and anodic polarization tests were employed to study the inhibition mechanism of NaVO3. Electrochemical impedance spectroscopy (EIS) tests were carried out to monitor the long-term inhibition performance of NaVO3. After applying 10 mM NaVO3 into 3.5 wt.% NaCl, the corrosion current density was reduced from 1.179 μA/cm2 to 148.3 nA/cm2. Additionally, the impedance increased with the immersion time. Followed by the characterization by scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS), the protection mechanism of NaVO3 was ascribed to the hydrolysis and adsorbed reduction of pentavalent vanadium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Du, H. Sun, Z. Wang, Y. He, G. Sheng, J. Zhang, and W. Liu, J. Market. Res. 19, 2388 (2022).

    Google Scholar 

  2. A. Davoodi, J. Pan, C. Leygraf, and S. Norgren, J. Electrochem. Soc. 155, C138 (2008).

    Google Scholar 

  3. M.V. Puc-Oxté and M.A. Pech-Canul, Anticorros. Methods Mater. 68, 137 (2021).

    Google Scholar 

  4. A.R. Yazdzad, T. Shahrabi, and M.G. Hosseini, Mater. Chem. Phys. 109, 199 (2008).

    Google Scholar 

  5. Y. Liu and Y.F. Cheng, J. Mater. Eng. Perform. 20, 271 (2011).

    Google Scholar 

  6. M. Chadili, M.M. Rguiti, B. El Ibrahimi, R. Oukhrib, A. Jmiai, M. Beelkhaouda, L. Bammou, M. Hilali, and L. Bazzi, Int. J. Corros. 2021, 1 (2021).

    Google Scholar 

  7. B. Luo, K. Lu, F. Zhang, W. Gao, Z. Zhan, and Z. Li, JOM 74, 3616 (2022).

    Google Scholar 

  8. G.A. Zhang, L.Y. Xu, and Y.F. Cheng, Corros. Sci. 51, 283 (2009).

    Google Scholar 

  9. Y.B. Tan, X.M. Wang, M. Ma, J.X. Zhang, W.C. Liu, R.D. Fu, and S. Xiang, Mater. Charact. 127, 41 (2017).

    Google Scholar 

  10. X. Chen, W. Tian, S. Li, M. Yu, and J. Liu, Chin. J. Aeronaut. 29, 1142 (2016).

    Google Scholar 

  11. Y. Liu and Y.F. Cheng, Mater. Corros. 61, 574 (2010).

    Google Scholar 

  12. Y. Liu and Y.F. Cheng, Mater. Corros. 61, 211 (2010).

    Google Scholar 

  13. Y. Liu, J. Zhao, X. Yang, Y. Gu, and Z. Yang, Anticorros. Methods Mater. 69, 592 (2022).

    Google Scholar 

  14. Y. Zhou, P. Zhang, J. Xiong, and F. Yan, Anticorros. Methods Mater. 66, 879 (2019).

    Google Scholar 

  15. A.N. Önal and A.A. Aksüt, Anticorros. Methods Mater. 47, 339 (2000).

    Google Scholar 

  16. L. Zeng, G. Xu, C. Wang, and T. Liang, JOM 75, 86 (2023).

    Google Scholar 

  17. O. Lopez-Garrity and G.S. Frankel, Corrosion 70, 928 (2014).

    Google Scholar 

  18. Z. Zheng, Y. Liu, Y. Bai, J. Zhang, Z. Han, and L. Ren, Colloids Surf. A Physicochem. Eng. Asp. 500, 64 (2016).

    Google Scholar 

  19. X. Li, Y. Di, Z. Chen, and W. Yang, Colloids Surf. A Physicochem. Eng. Asp. 653, 129990 (2022).

    Google Scholar 

  20. J. Li, L. Wang, H. Bai, C. Chen, L. Liu, H. Guo, B. Lei, G. Meng, Z. Yang, and Z. Feng, Prog. Org. Coat. 183, 107732 (2023).

    Google Scholar 

  21. S.A. Kulinich and A.S. Akhtar, Russ. J. Nonferrous Met. 53, 176 (2012).

    Google Scholar 

  22. I.A.W. Ma, Sh. Ammar, S.S.A. Kumar, K. Ramesh, and S. Ramesh, J. Coat. Technol. Res. 19, 241 (2022).

    Google Scholar 

  23. Z. Feng, B. Hurley, J. Li, and R. Buchheit, J. Electrochem. Soc. 165, C94 (2018).

    Google Scholar 

  24. Z. Feng, J. Li, Z. Yang, and R. Buchheit, Materials 13, 1325 (2020).

    Google Scholar 

  25. V.M. Iannuzzi and G. Frankel, ECS Trans. 3, 127 (2007).

    Google Scholar 

  26. M. Iannuzzi, T. Young, and G.S. Frankel, J. Electrochem. Soc. 153, B533 (2006).

    Google Scholar 

  27. M. Iannuzzi and G.S. Frankel, Corrosion 63, 672 (2007).

    Google Scholar 

  28. K.D. Ralston and R.G. Buchheit, ECS Electrochem. Lett. 2, C35 (2013).

    Google Scholar 

  29. D.S. Kharitonov, J. Sommertune, C. Örnek, J. Ryl, I.I. Kurilo, P.M. Claesson, and J. Pan, Corros. Sci. 148, 237 (2019).

    Google Scholar 

  30. X. Guo, J. Li, B.L. Hurley, and R.G. Buchheit, VII Aluminum Surface Science & Technology (Madeira, Portugal, 2015), p124.

    Google Scholar 

  31. H. Guan and R.G. Buchheit, Corrosion 60, 284 (2004).

    Google Scholar 

  32. B.L. Hurley, S. Qiu, and R.G. Buchheit, J. Electrochem. Soc. 158, C125 (2011).

    Google Scholar 

  33. J. Christudasjustus, M.R. Felde, C.S. Witharamage, J. Esquivel, A.A. Darwish, C. Winkler, and R.K. Gupta, J. Mater. Sci. Technol. 135, 1 (2023).

    Google Scholar 

  34. J. Christudasjustus, C.S. Witharamage, G. Walunj, T. Borkar, and R.K. Gupta, J. Mater. Sci. Technol. 122, 68 (2022).

    Google Scholar 

  35. J. Christudasjustus, C.S. Witharamage, V.B. Vukkum, G. Walunj, T. Borkar, and R.K. Gupta, J. Electrochem. Soc. 170, 031508 (2023).

    Google Scholar 

  36. N. Birbilis and R.G. Buchheit, J. Electrochem. Soc. 152, B140 (2005).

    Google Scholar 

  37. Z. Feng, B. Hurley, M. Zhu, Z. Yang, J. Hwang, and R. Buchheit, J. Electrochem. Soc. 166, C520 (2019).

    Google Scholar 

  38. M. Zhu, S. Zeng, H. Zhang, J. Li, and B. Cao, Sol. Energy Mater. Sol. Cells 186, 200 (2018).

    Google Scholar 

  39. M.A. Herman and H. Sitter, Molecular Beam Epitaxy (Springer, Berlin, Heidelberg, 1989).

    Google Scholar 

  40. K.L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969).

    Google Scholar 

  41. C.V. Thompson, J. Floro, and H.I. Smith, J. Appl. Phys. 67, 4099 (1990).

    Google Scholar 

  42. S. Al-Khateeb, T.W. Button, and J.S. Abell, Supercond. Sci. Technol. 23, 095001 (2010).

    Google Scholar 

  43. S. Al Khateeb and T.D. Sparks, J. Mater. Res. 34, 2456 (2019).

    Google Scholar 

  44. S. Al-Khateeb, D. Pavlopoulos, T.W. Button, and J.S. Abell, J Supercond. Nov. Magn. 25, 1823 (2012).

    Google Scholar 

  45. J. Christudasjustus, V.B. Vukkum, and R.K. Gupta, Corros. Sci. 215, 111056 (2023).

    Google Scholar 

  46. J. Li, B. Hurley, and R. Buchheit, J. Electrochem. Soc. 162, C219 (2015).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Guangdong Basic and Applied Basic Research Foundation (2022A1515110115) and College Students’ Innovative Entrepreneurial Training Plan Program (Sun Yat-sen University).

Funding

Basic and Applied Basic Research Foundation of Guangdong Province, (2022A1515110115), Zhiyuan Feng.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaotao Liu or Zhiyuan Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 188 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Zhong, H., Li, J. et al. Corrosion Inhibition of 3003 Al Alloy by Aqueous Vanadate. JOM 76, 291–299 (2024). https://doi.org/10.1007/s11837-023-06073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06073-1

Navigation