Skip to main content
Log in

Investigation of n-ZnO/p-GaAs Heterojunction Solar Cell Using Two-Dimensional Numerical Simulation

  • Recent Advancements in Optoelectronics & Photonics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The n-ZnO/p-GaAs heterojunction is a promising structure to reach good conversion efficiency owing to the important optical and electrical properties of both zinc oxide (ZnO) and gallium arsenide (GaAs) semiconductors. In this work, the n-ZnO/p-GaAs heterojunction solar cell was studied to estimate the best photovoltaic parameters of the structure. For that, the effects of thickness and charge carrier concentration of both n-ZnO and p-GaAs absorber on the photovoltaic performance were investigated under standard illumination conditions (AM1.5, 100 mW/cm2). A two-dimensional numerical simulation was carried out using Atlas Silvaco software. An optimal p-GaAs thickness of 100 µm was found, from which no significant change in the conversion efficiency was noted. A high sensitivity of the conversion efficiency by varying the ZnO donor concentration was observed, while the presence of an optimal GaAs acceptor density was revealed. Additionally, an optimal ZnO thickness of 200 nm was shown. The n-ZnO/p-GaAs cell showed a predicted best conversion efficiency of 21.21%. Furthermore, it was revealed that reducing the thickness of the GaAs absorber layer to 2 µm allowed for a significant conversion efficiency of 16.19%, with an optimal GaAs acceptor concentration of 4 × 1018 cm− 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Huang, B. Guo, S. Li, J. Fu, L. Zhang, G. Lin, Q. Yang, and Q. Cheng, J. Mater. Sci. 54, 4011 (2019).

    Article  Google Scholar 

  2. F. Lai, M. Hsieh, J. Yang, Y. Hsu, and S. Kuo, Int. J. Energy Res. 45, 1142 (2021).

    Article  Google Scholar 

  3. A. Bouarissa, A. Gueddim, N. Bouarissa, and H. Maghraoui-Meherezi, Mater. Sci. Eng. B 263, 114816 (2021).

    Article  Google Scholar 

  4. J. Luo, Y. Wang, and Q. Zhang, Sol. Energy 163, 289 (2018).

    Article  Google Scholar 

  5. H.J. Lee, J.W. Lee, H.J. Kim, D.-H. Jung, K.-S. Lee, S.H. Kim, D. Geum, C.Z. Kim, W.J. Choi, and J.M. Baik, Phys. Chem. Chem. Phys. 18, 2906 (2016).

    Article  Google Scholar 

  6. M. Manoua, N. Fazouan, A. Almaggoussi, N. Kamoun, and A. Liba, JOM 73, 2819 (2021).

    Article  Google Scholar 

  7. A. Mang, K. Reimann, and S. Rübenacke, Solid State Commun. 94, 251 (1995).

    Article  Google Scholar 

  8. K. Mahmood, and B.M. Samaa, J. Exp. Theor. Phys. 126, 766 (2018).

    Article  Google Scholar 

  9. S. Kyu, J. Korean Sol. Energy Soc. 39, 33 (2019).

    Article  Google Scholar 

  10. S. Yiğit Gezgin, A. Kepceoğlu, A. Toprak, and H. Şükür Kılıç, Mater. Today Proc. 18, 1996 (2019).

    Article  Google Scholar 

  11. R. Pietruszka, B.S. Witkowski, E. Zielony, K. Gwozdz, E. Placzek-Popko, and M. Godlewski, Sol. Energy 155, 1282 (2017).

    Article  Google Scholar 

  12. G. Zheng, J. Song, J. Zhang, J. Li, B. Han, F. Xudong Meng, Y.Z. Yang, and Y. Wang, Mater. Sci. Semicond. Process. 112, 105016 https://doi.org/10.1016/j.mssp.2020.105016 (2020).

    Article  Google Scholar 

  13. M. Ajili, M. Castagné, and N.K. Turki, Superlattices Microstruct. 53, 213 (2013).

    Article  Google Scholar 

  14. M. Manoua, T. Jannane, N. Fazouan, M. Mabrouki, A. Almaggoussi, N.T. Kamoun, and A. Liba, J. Mater. Sci. Mater. Electron. 31, 20485 (2020).

    Article  Google Scholar 

  15. B. Hussain, A. Ebong, and I. Ferguson, Sol. Energy Mater. Sol. Cells 139, 95 (2015).

    Article  Google Scholar 

  16. R. Pietruszka, R. Schifano, T.A. Krajewski, B.S. Witkowski, K. Kopalko, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. Placzek-Popko, and M. Godlewski, Sol. Energy Mater. Sol. Cells 147, 164 (2016).

    Article  Google Scholar 

  17. M. Manoua, T. Jannane, O. Abouelala, N. Fazouan, A. Almaggoussi, N.T. Kamoun, and A. Liba, Eur. Phys. J. Appl. Phys. 90, 10101 (2020).

    Article  Google Scholar 

  18. S. Chala, R. Boumaraf, A.F. Bouhdjar, M. Bdirina, M. Labed, T.E. Taouririt, M. Elbar, N. Sengouga, F. Yakuphanoğlu, S. Rahmane, Y. Naoui, and Y. Benbouzid, J. Nano- Electron. Phys. 13, 01009 (2021).

    Article  Google Scholar 

  19. S. Boudour, I. Bouchama, N. Bouarissa, and M. Hadjab, J. Sci. Adv. Mater. Devices 4, 111 (2019).

    Article  Google Scholar 

  20. P. Caban, R. Pietruszka, K. Kopalko, B.S. Witkowski, K. Gwozdz, E. Placzek-Popko, and M. Godlewski, Optik 157, 743 (2018).

    Article  Google Scholar 

  21. L. Derbali, Materials 15, 6268 (2022).

    Article  Google Scholar 

  22. A. Goetzberger, and C. Hebling, Sol. Energy Mater. Sol. Cells 62, 1 (2000).

    Article  Google Scholar 

  23. T. Huo, H. Yin, D. Zhou, L. Sun, T. Tian, H. Wei, N. Hu, Z. Yang, Y. Zhang, Y. Su, and A.C.S. Sustain, Chem. Eng. 8, 15532 (2020).

    Google Scholar 

  24. V.O. Gridchin, K.P. Kotlyar, A.V. Vershinin, N.V. Kryzhanovskaya, E.V. Pirogov, A.A. Semenov, P.Y. Belyavskiy, A.V. Nashchekin, G.E. Cirlin, and I.P. Soshnikov, J. Phys. Conf. Ser. 1410, 012054 (2019).

    Article  Google Scholar 

  25. Y.F. Makableh, R. Vasan, J.C. Sarker, A.I. Nusir, S. Seal, and M.O. Manasreh, Sol. Energy Mater. Sol. Cells 123, 178 (2014).

    Article  Google Scholar 

  26. X. Jin, and N. Tang, Mater. Res. Express 8, 016412 (2021).

    Article  Google Scholar 

  27. D.P. Pham, et al., Mater. Sci. Semicond. Process. 121, 105344 (2021).

    Article  Google Scholar 

  28. M. Manoua, T. Jannane, O. Abouelala, M. Sajieddine, M. Mabrouki, A. Almaggoussi and A. Liba. Optimization of ZnO thickness for high efficiency of n-ZnO/p-Si heterojunction solar cells by 2D numerical simulation, in Proceeding of the 2020 IEEE 6th International Conference on Optimization and Applications (ICOA) Beni Mellal, Morocco. https://doi.org/10.1109/ICOA49421.2020.9094491.

  29. Y.-C. Kao, H.-M. Chou, S.-C. Hsu, A. Lin, C.-C. Lin, Z.-H. Shih, C.-L. Chang, H.-F. Hong, and R.-H. Horng, Sci. Rep. 9, 4308 (2019).

    Article  Google Scholar 

  30. Atlas User’s Manual: Device Simulation from Silvaco International, Version 1.8.20

  31. F. Azri, M. Labed, A.F. Meftah, N. Sengouga, and A.M. Meftah, Opt. Quantum Electron. 48, 1 (2016).

    Article  Google Scholar 

  32. D. Diouf, J.-P. Kleider, and C. Longeaud, Two-Dimensional Simulations of Interdigitated Back Contact Silicon Heterojunctions Solar, in Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells. (Springer, Berlin, 2012), pp. 483–519.

    Chapter  Google Scholar 

  33. J. Dziewior, and W. Schmid, Appl. Phys. Lett. 31, 346 (1977).

    Article  Google Scholar 

  34. S.S.A. Askari, M. Kumar, and M.K. Das, Semicond. Sci. Technol. 33, 115003 (2018).

    Article  Google Scholar 

  35. M. Manoua, A. Bouajaj, A. Almaggoussi, N.T. Kamoun, and A. Liba, J. Nanophotonics 16, 026008 (2022).

    Article  Google Scholar 

  36. M. Belarbi, M. Beghdad, and A. Mekemeche, Sol. Energy 127, 206 (2016).

    Article  Google Scholar 

  37. M.A. Green, Solid-State Electron. 24, 788 (1981).

    Article  Google Scholar 

  38. W. Zhang, and N. Tang, Mater. Res. Express 7, 105903 (2020).

    Article  Google Scholar 

  39. R. Zhou, W. Zhang, and N. Tang, Opt. Mater. 127, 112095 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Manoua.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 32 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoua, M., Jannane, T., El-Hami, K. et al. Investigation of n-ZnO/p-GaAs Heterojunction Solar Cell Using Two-Dimensional Numerical Simulation. JOM 75, 3601–3611 (2023). https://doi.org/10.1007/s11837-023-05963-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05963-8

Navigation