Skip to main content
Log in

Microstructure, Mechanical Properties, and Corrosion Behaviour of Cryorolled Low-Carbon Steel at Different Thickness Reductions

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Low-carbon steel has been widely used in a variety of industries, but its limited strength makes it difficult to develop its potential applications. The current work aims to produce ultrafine-grains in low-carbon steel using cryorolling at various thickness reductions of 50%, 60%, 70%, 80%, and 90%, and to investigate its impact on the microstructure, mechanical properties, and corrosion behavior. Hardness and tensile strength increased with reduction, with the highest values attained at 90% with 208.5 Hv and 826.5 MPa, respectively. The sample cryorolled at 90% has the smallest crystallite size (38.16 nm) and the highest lattice strain (20.58 × 10−4). Low-angle grain boundaries increase as the thickness decreases, whereas high-angle grain boundaries show a different trend. Corrosion resistance decreases with thickness reduction, with the highest corrosion rate (18.912 mm/year) obtained for the sample cryorolled at 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Arslanhafeez, M. Usman, M.A. Arshada, and M. Adeelumar, Cryst. 508, 1 (2020).

    Google Scholar 

  2. C.A. Suski, D.C. Cesar Edil, and G.M. Julio Cesar, J. Mater. Res. 25, 1 (2022).

    Google Scholar 

  3. E. Razizadeh, A. Mani, and M. Kazeminezhad, Mater. Sci. Eng. A. 515, 162 (2009).

    Article  Google Scholar 

  4. Q. Yuan, G. Xu, M. Liu, S. Liu, and H. Hu, Trans. Indian Inst. Met. T. 1 (2018).

  5. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino, Scr. Mater. 47, 893 (2002).

    Article  Google Scholar 

  6. J.T. Shi, L.-G. Hou, J.-R. Zuo, L.-Z. Zuang, and J.-S. Zhang, Int. J. Miner. Metall. 24, 638 (2017).

    Article  Google Scholar 

  7. S.A. Zakaria, A.S. Anasyida, H. Zuhailawati, B.K. Dhindaw, N.A. Jabit, and A. Ismail, Trans. Nonferrous Met. Soc. China. 31, 2949 (2021).

    Article  Google Scholar 

  8. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Mater. Sci. Eng. A. 527, 2738 (2010).

    Article  Google Scholar 

  9. N. Peranio, Y.J. Li, F. Roters, and D. Raabe, Mater. Sci. Eng. A. 527, 4161 (2010).

    Article  Google Scholar 

  10. Y. Xiong, T. He, H. Li, Y. Lu, F. Ren, and A.A. Volinsky, Mater. Sci. Eng. A. 703, 68 (2017).

    Article  Google Scholar 

  11. P. Mallick, N. Tewary, S.K. Ghosh, and P.P. Chattopadhyay, Mater. Charact. 133, 77 (2017).

    Article  Google Scholar 

  12. B. Roy, R. Kumar, and J. Das, Mater. Sci. Eng. A. 631, 241 (2015).

    Article  Google Scholar 

  13. R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi, Sci. Technol. Adv. Mater. 5, 153 (2004).

    Article  Google Scholar 

  14. P. Li, J. Li, Q. Meng, W. Hu, and D. Xu, J. Alloys Compd. 578, 320 (2013).

    Article  Google Scholar 

  15. Y. Xiong, T. He, J. Wang, Y. Lu, L. Chen, F. Ren, Y. Liu, and A.A. Volinsky, Mater. Des. 88, 398 (2015).

    Article  Google Scholar 

  16. Y. Xiong, T. He, Z. Guo, H. He, F. Ren, and A.A. Volinsky, Mater. Sci. Eng. A. 563, 163 (2013).

    Article  Google Scholar 

  17. D. Singh, R. Jayaganthan, P. Nageswara Rao, A. Kumar, and D. Venkateswarlu, Mater. Today. 4, 7609 (2017).

    Article  Google Scholar 

  18. R. Jayaganthan, H.G. Brokmeier, B. Schwebke, and S.K. Panigrahi, J. Alloys Compd. 496, 183 (2010).

    Article  Google Scholar 

  19. S. Goel, N. Keskar, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Key, and N. Saibaba, Mater. Sci. Eng. A. 603, 23 (2014).

    Article  Google Scholar 

  20. K.S.V.B.R. Krishna, K. Chandra Sekhar, R. Tejas, N. Naga Krishna, K. Sivaprasad, R. Narayanasamy, and K. Venkateswarlu, Mater. Des. 67, 107 (2015).

    Article  Google Scholar 

  21. D. Guo, M. Li, Y. Shi, Z. Zhang, T. Ma, H. Zhang, and X. Zhang, Mater. Sci. Eng. A. 558, 611 (2012).

    Article  Google Scholar 

  22. D. Singh, R.P. Nageswara, and R. Jayaganthan, Int. J. Miner. Metall. 20, 759 (2013).

    Article  Google Scholar 

  23. Z. Xu, M. Liu, Z. Jia, and H.J. Roven, J. Alloys Compd. 695, 827 (2017).

    Article  Google Scholar 

  24. M. Yadollahpour, H. Hosseini-Toudeshky, and F. Karimzadeh, JOM. 68, 1446 (2016).

    Article  Google Scholar 

  25. N. Rangaraju, T. Raghuram, B.V. Krishna, K.P. Rao, and P. Venugopal, Mater. Sci. Eng. A. 398, 246 (2005).

    Article  Google Scholar 

  26. J. Callister, D. William, Fundamentals of Meterial Science and engineering. (United State of America 2005), pp 536-538.

  27. D. Gendy, Carbon Steel Handbook (California, Palo alto, 2007), pp35–38.

    Google Scholar 

  28. V.M. Segal, S. Ferrasse, and F. Alford, Mater. Sci. Eng. A. 422, 321 (2006).

    Article  Google Scholar 

  29. Y. Xiong, Y. Yue, Y. Lu, T. He, M. Fan, F. Ren, and W. Cao, Mater. Sci. Eng. A. 709, 270 (2018).

    Article  Google Scholar 

  30. M. Hiroyuki, Mater. Trans. 57, 559 (2016).

    Article  Google Scholar 

  31. Y. Estrin, and A. Vinogradov, Acta Mater. 61, 782 (2013).

    Article  Google Scholar 

  32. G. Shit, P. Bhaskar, S. Ningshen, A. Dasgupta, U.K. Mudali, and A.K. Bhaduri, AIP Conf. Proc. 1832, 030020 (2017).

    Article  Google Scholar 

  33. P. Wang, J. Zhao, L. Ma, X. Cheng, and X. Li, Mater. Charact. 179, 111385 (2021).

    Article  Google Scholar 

  34. M. Hasegawa, and M. Osawa, Corrosion 40(7), 371 (1984).

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial assistance provided by JICA AunSeed-Net. This study was also supported by a MYTRIBOS Industrial Grant, Grant No. 304 /PBAHAN /6050471 /M171.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Anasyida.

Ethics declarations

Conflict of interest

The authors have no disclosures to declare

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 43 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakaria, S.A., Motham, K., Anasyida, A.S. et al. Microstructure, Mechanical Properties, and Corrosion Behaviour of Cryorolled Low-Carbon Steel at Different Thickness Reductions. JOM 75, 3900–3910 (2023). https://doi.org/10.1007/s11837-023-05953-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05953-w

Navigation