Skip to main content
Log in

Efficient Direct Regeneration of Spent LiCoO2 Cathode Materials by Oxidative Hydrothermal Solution

  • Smart Energy Utilization for Metallurgical Recycling of Battery and Electronic Waste
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The traditional direct regeneration of cathode material of spent lithium-ion batteries is encountering the challenge of high energy consumption. Here, an oxidative hydrothermal solution has been developed for direct regeneration of spent LiCoO2 materials in low-temperature operation. The regenerated cathode material displays a better structural transformation with single-crystal particle morphology. More Co2+ in spent LiCoO2 materials are successfully transformed to Co3+ in regenerated cathode materials. The initial discharge capacity of regenerated cathode materials reaches 153.46 mAh/g with a capacity retention rate of 95.02% after 200 cycles, which are both significantly higher than that of 39.83% in regenerated materials obtained by the traditional hydrothermal regeneration process. This oxidative hydrothermal solution can provide the electrochemical driving force to accelerate the repair of defects of spent cathode materials and break the limit of kinetics under low-temperature conditions. The low-temperature hydrothermal regeneration process is available to guide efficient and economically reasonable recycling of spent cathode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Y.L. Zhao, X.Z. Yuan, L.B. Jiang, J. Wen, H. Wang, R.P. Guan, J.J. Zhang, and G.M. Zeng, Chem. Eng. J. 383, 123089 https://doi.org/10.1016/j.cej.2019.123089 (2020).

    Article  Google Scholar 

  2. P. Meshram, B.D. Pandey, and T.R. Mankhand, Chem. Eng. J. 281, 418 https://doi.org/10.1016/j.cej.2015.06.071 (2015).

    Article  Google Scholar 

  3. X.P. Fan, C.L. Tan, Y. Li, Z.Q. Chen, Y.H. Li, Y.G. Huang, Q.C. Pan, F.H. Zheng, H.Q. Wang, and Q.Y. Li, J. Hazard. Mater. 410, 0304 https://doi.org/10.1016/j.jhazmat.2020.124610 (2021).

    Article  Google Scholar 

  4. Y.C. Zhang, W.Q. Wang, Q. Fang, and S.M. Xu, Waste Manag. 102, 847 https://doi.org/10.1016/j.wasman.2019.11.045 (2020).

    Article  Google Scholar 

  5. A. Holzer, S. Windisch-Kern, C. Ponak, and H. Raupenstrauch, Metals 11(1), 149 https://doi.org/10.3390/met11010149 (2021).

    Article  Google Scholar 

  6. Y.L. Yao, M.Y. Zhu, Z. Zhao, B.H. Tong, Y.Q. Fan, and Z.S. Hua, ACS Sustain. Chem. Eng. 6(11), 13611 https://doi.org/10.1021/acssuschemeng.8b03545 (2018).

    Article  Google Scholar 

  7. Z.L. Liang, C. Cai, G.W. Peng, J.P. Hu, H.J. Hou, B.C.A. Liu, S. Liang, K.K. Xiao, S.S. Yuan, and J.K. Yang, ACS Sustain. Chem. Eng. 9(17), 5750 https://doi.org/10.1021/acssuschemeng.1c00942 (2021).

    Article  Google Scholar 

  8. K. Shibazaki, D. Azumai, M. Watanabe, A. Kishita, Y. Hiraga, and H. Miyazaki, Kagaku Kogaku Ronbunshu 46(5), 167 https://doi.org/10.1252/kakoronbunshu.46.167 (2020).

    Article  Google Scholar 

  9. Y. Gao, Y. Li, J. Li, H.Q. Xie, and Y.P. Chen, J. Alloys Compd. 845, 156234 https://doi.org/10.1016/j.jallcom.2020.156234 (2020).

    Article  Google Scholar 

  10. Y. Liu, H.J. Yu, Y. Wang, D. Tang, W.X. Qiu, W.Z. Li, and J. Li, Waste Manag 143, 186 https://doi.org/10.1016/j.wasman.2022.02.024 (2022).

    Article  Google Scholar 

  11. X.H. Zheng, W.F. Gao, X. Zhang, M.M. He, X. Lin, H.B. Cao, Y. Zhang, and Z. Sun, Waste Manag. 60, 680 https://doi.org/10.1016/j.wasman.2016.12.007 (2017).

    Article  Google Scholar 

  12. X. Qu, H.W. Xie, X. Chen, Y.Q. Tang, B.L. Zhang, P.F. Xing, and H.Y. Yin, ACS Sustain. Chem. Eng. 8(16), 6524 https://doi.org/10.1021/acssuschemeng.0c01205 (2020).

    Article  Google Scholar 

  13. C.K. Lee, and K.I. Rhee, J. Power Sources 109(1), 17 https://doi.org/10.1016/S0378-7753(02)00037-X (2002).

    Article  Google Scholar 

  14. S.Y. Zhou, Y.J. Zhang, Q. Meng, P. Dong, X. Yang, P.W. Liu, Q.X. Li, and Z.T. Fei, J. Environ. Chem. Eng. 9(1), 104789 https://doi.org/10.1016/j.jece.2020.104789 (2021).

    Article  Google Scholar 

  15. L.L. Wang, B.B. Chen, J. Ma, G.L. Cui, and L.Q. Chen, Chem. Soc. Rev. 47(17), 6505 https://doi.org/10.1039/C8CS00322J (2018).

    Article  Google Scholar 

  16. Y. Li, C.L. Tan, S.M. Wei, L.S. Cui, X.P. Fan, Q.C. Pan, F.Y. Lai, F.H. Zheng, H.Q. Wang, and Q.Y. Li, J. Mater. Chem. A. 8(41), 21649 https://doi.org/10.1039/D0TA08879J (2020).

    Article  Google Scholar 

  17. Z.T. Fei, Y.J. Zhang, Q. Meng, P. Dong, Y. Li, J.F. Fei, H.B. Qi, and J. Yan, J. Hazard. Mater. 432, 128664 https://doi.org/10.1016/j.jhazmat.2022.128664 (2022).

    Article  Google Scholar 

  18. G. Ceder, Y.M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.I. Jang, and B.I. Huang, Nature 392(6677), 694 (1998).

    Article  Google Scholar 

  19. L.G. Zhang, Z.M. Xu, and Z. He, ACS Sustain. Chem. Eng. 8(31), 11596 https://doi.org/10.1021/acssuschemeng.0c02854 (2020).

    Article  Google Scholar 

  20. B.W. Deng, Z.H. Zhou, W.Y. Wang, and D.H. Wang, ACS Sustain. Chem. Eng. 8(37), 14022 https://doi.org/10.1021/acssuschemeng.0c03989 (2020).

    Article  Google Scholar 

  21. X. Meng, J. Hao, H. Cao, X. Lin, P. Ning, X. Zheng, J. Chang, X. Zhang, B. Wang, and Z. Sun, Waste Manag. 84, 54 https://doi.org/10.1016/j.wasman.2018.11.034 (2019).

    Article  Google Scholar 

  22. L.L. Wang, J. Ma, C. Wang, X.R. Yu, R. Liu, F. Jiang, X.W. Sun, A.B. Du, X.H. Zhou, and G.L. Cui, Adv. Sci. 6(12), 1900355 https://doi.org/10.1002/advs.201900355 (2019).

    Article  Google Scholar 

  23. M. Chen, X. Ma, B. Chen, R. Arsenault, P. Karlson, N. Simon, and Y. Wang, Joule 3(11), 2622 https://doi.org/10.1016/j.joule.2019.09.014 (2019).

    Article  Google Scholar 

  24. J. Wang, J. Ma, K. Jia, Z. Liang, G. Ji, Y. Zhao, B. Li, G. Zhou, and H.M. Cheng, ACS Energy Lett. 7, 2816 https://doi.org/10.1021/acsenergylett.2c01539 (2022).

    Article  Google Scholar 

  25. P. Xu, Q. Dai, H. Gao, H. Liu, M. Zhang, M. Li, Y. Chen, K. An, Y.S. Meng, P. Liu, Y. Li, J.S. Spangenberger, L. Gaines, J. Lu, and Z. Chen, Joule 4(12), 2609 https://doi.org/10.1016/j.joule.2020.10.008 (2020).

    Article  Google Scholar 

  26. H.H. Ryu, H.H. Sun, S.T. Myung, C.S. Yoon, and Y.K. Sun, Energy Environ. Sci. 14, 844 https://doi.org/10.1039/D0EE03581E (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (52004116), the Major Science and Technology Special Program of Yunnan Province (202202AG050003), the Applied Basic Research Plan of Yunnan Province (202101AS070020, 202201AT070184, 202101BE070001-016, 202001AU070039), the High-level Talent Introduction Scientific Research Start Project of KUST (20190015), and the Analysis and Testing Fund of Kunming University of Technology (2021P20203102008) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

ZF: Investigation, Methodology, Formal analysis, Writing–original draft, Visualization. YX: Investigation, Methodology, Formal analysis. PD: Conceptualization, Investigation, Resources, Supervision, Funding acquisition. QM: Investigation, Methodology, Writing–review and editing. YZ: Investigation, Resources.

Corresponding authors

Correspondence to Qi Meng or Yingjie Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 437 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, Z., Xing, Y., Dong, P. et al. Efficient Direct Regeneration of Spent LiCoO2 Cathode Materials by Oxidative Hydrothermal Solution. JOM 75, 3632–3642 (2023). https://doi.org/10.1007/s11837-023-05941-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05941-0

Navigation