Skip to main content
Log in

Formation Mechanism of AlN-MnS Complex Inclusions in Fe-5Mn-2Al-0.15C Medium Mn Steel

  • Design, Production, and Applications of Steels for a Sustainable Future
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The formation mechanism of AlN-MnS complex inclusions in Fe-5Mn-2Al-0.15C medium Mn steel was investigated under as-cast conditions by microstructure observation, thermodynamic analyses, and the Clyne–Kurz microsegregation model. The results showed the variations in the maximum and minimum partition coefficients for N and S were relatively large, and that the maximum diffusion coefficients of solute N, S, Mn and Al were more than 70% more than the minimum ones. Therefore, the variable partition coefficients and variable diffusion coefficients of solute elements under different temperatures should be considered in the Clyne–Kurz model during the solidification process. The partition coefficients of Al were higher than 1, segregating into the dendrite interior. However, the partition coefficients for elements N, Mn, and S were lower than 1, enriching in the residual liquid steel. By the Clyne–Kurz model considering the variable partition coefficients and variable diffusion coefficients, the precipitation temperatures of AlN and MnS were 1738 K and 1717 K during the solidification process, respectively. With experimental observation, the formation of AlN-MnS complex inclusions during the solidification process may be the AlN acting as a nucleation site for MnS, and then MnS wrapped or attached to the surface of AlN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw and processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. J.H. Kim, S.W. Lee, K. Lee, J.-K. Kim, and D.-W. Suh, JOM 71, 1366 (2019).

    Google Scholar 

  2. G. Su, X. Gao, D. Zhang, L. Du, J. Hu, and Z. Liu, JOM 70, 672 (2018).

    Google Scholar 

  3. L. Liu, B. He, and M. Huang, JOM 71, 1322 (2019).

    Google Scholar 

  4. R. Rana, E.D. Moor, J.G. Speer, and D.K. Matlock, JOM 70, 706 (2018).

    Google Scholar 

  5. A. Rakan, L.G. Hector, C.M. Enloe, A.-F. Fadi, and W.B. Tyson, JOM 70, 894 (2018).

    Google Scholar 

  6. S. Hu, Z. Zheng, W. Yang, and H. Yang, Steel Res. Int. 93, 2200191 (2022).

    Google Scholar 

  7. Y. Li, W. Li, N. Min, H. Liu, and X. Jin, Int. J. Plast. 133, 102805 (2020).

    Google Scholar 

  8. H. Tao, H. Zhang, and M. Wang, Ironmak. Steelmak. 47, 351 (2020).

    Google Scholar 

  9. T. Kang, J. Liang, Z. Zhao, L. Zhang, and X. Hou, Ironmak. Steelmak. 49, 123 (2022).

    Google Scholar 

  10. Y. Zhang, C. Zhao, M. Sato, G. Miyamoto, and T. Furuhara, ISIJ Int. 61, 1641 (2021).

    Google Scholar 

  11. T. Zhao, S. Rong, X. Hao, Y. Wang, C. Chen, and T. Wang, Mater. Charact. 183, 111595 (2022).

    Google Scholar 

  12. S. Zheng, C. Davis, and M. Strangwood, Mater. Charact. 95, 94 (2014).

    Google Scholar 

  13. C. Lv, Y. Wang, X. Huang, L. Zhang, Q. Fu, M. Wu, and J. Zhang, Steel Res. Int. 90, 1900228 (2019).

    Google Scholar 

  14. S. Li, S. Yang, Q. Lu, H. Luo, and W. Tao, Metall. Trans. B 50, 1 (2019).

    Google Scholar 

  15. L. Fan, S. Li, Y. Zhao, L. Jia, and J. He, E. Ironmak. Steelmak. 47, 865 (2020).

    Google Scholar 

  16. Y.-M. Won and B.G. Thomas, Metall. Trans. A 32, 1755 (2001).

    Google Scholar 

  17. E. Scheil and Z. Metallkd, Int. J. Mater. Res. 34, 70 (1942).

    Google Scholar 

  18. T.F. Bower, H. Brody, and M.C. Flemings, Metall. Soc. AIME 236, 624 (1966).

    Google Scholar 

  19. T.W. Clyne and W. Kurz, Metall. Trans. A 12, 965 (1981).

    Google Scholar 

  20. Ohnaka, ISIJ Int. 26, 1045 (1986).

    Google Scholar 

  21. V.R. Voller, and C. Beckermann, Metall. Trans. A 30, 2183 (1999).

    Google Scholar 

  22. Z. Liu, J. Wei, and K. Cai, ISIJ Int. 42, 958 (2002).

    Google Scholar 

  23. S.K. Choudhary and A. Ghosh, ISIJ Int. 49, 1819 (2009).

    Google Scholar 

  24. Y. Liu, L. Zhang, H. Duan, Y. Zhang, Y. Luo, and A.N. Conejo, Metall. Trans. A 47, 3015 (2016).

    Google Scholar 

  25. C. Shi, X. Chen, and H. Guo, Metall. Mater. 19, 295 (2012).

    Google Scholar 

  26. H. Liu, J. Liu, S. Michelic, F. Wei, C. Zhuang, Z. Han, and S. Li, Ironmak. Steelmak. 43, 171 (2016).

    Google Scholar 

  27. M. Alba, M. Nabeel, and N. Dogan, Steel Res. Int. 91, 1900477 (2020).

    Google Scholar 

  28. M. Nabeel, M. Alba, A. Karasev, P.G. Jönsson, and N. Dogan, Metall. Trans. B 50, 1674 (2019).

    Google Scholar 

  29. M. Alba, M. Nabeel, and N. Dogan, Ironmak. Steelmak. 48, 379 (2021).

    Google Scholar 

  30. D. Liu, Z. Xue, and S. Song, Steel Res. Int. 93, 2200551 (2022).

    Google Scholar 

  31. M.-K. Paek, J.-M. Jang, M. Jiang, and J.-J. Pak, ISIJ Int. 53, 973 (2013).

    Google Scholar 

  32. H. Liu, J. Liu, S.K. Michelic, S. Shen, X. Su, B. Wu, and H. Ding, Steel Res. Int. 87, 1723 (2016).

    Google Scholar 

  33. W. Wang, H. Zhu, Y. Han, J. Li, and Z. Xue, Ironmak. Steelmak. 48, 1038 (2021).

    Google Scholar 

  34. T. Zhang, Y. Chen, G. Cheng, X. Yang, X. Chen, J. Pan, Y. Huang, and Q. Wang, Steel Res. Int. 93, 2200478 (2022).

    Google Scholar 

  35. P. Lu, H. Li, H. Feng, Z. Jiang, H. Zhu, Z. Liu, and T. He, Metall. Trans. B 52, 2210 (2021).

    Google Scholar 

  36. L. Gui, M. Long, Y. Huang, D. Chen, H. Chen, H. Duan, and S. Yu, Metall. Trans. B 49, 3280 (2018).

    Google Scholar 

  37. Y. Huang, M. Long, P. Liu, D. Chen, H. Chen, L. Gui, T. Liu, and S. Yu, Metall. Trans. B 48, 2504 (2017).

    Google Scholar 

  38. Y. Ueshima, S. Mizoguchi, T. Matsumiya, and H. Kajioka, Metall. Trans. B 17, 845 (1986).

    Google Scholar 

  39. L. Martin, W. Tomasz, P.-K. Erwin, Z. Sabine, and K. Ernst, Steel Res. Int. 89, 1700342 (2018).

    Google Scholar 

  40. J.H. Park, D.-J. Kim, and D.J. Min, Metall. Trans. A 43, 2316 (2012).

    Google Scholar 

  41. Y. Chen, Y. Wang, and A. Zhao, J. Iron Steel Res. Int. 19, 51 (2012).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51974079, 52174310). The authors greatly appreciate their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-guo Zheng.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 420 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Lb., Zheng, Sg. & Zhu, My. Formation Mechanism of AlN-MnS Complex Inclusions in Fe-5Mn-2Al-0.15C Medium Mn Steel. JOM 75, 2235–2245 (2023). https://doi.org/10.1007/s11837-023-05831-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05831-5

Navigation