Skip to main content
Log in

Effective DC Conductivity of Polymer Composites Containing Graphene Nanosheets

  • 2D Materials – Preparation, Properties & Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effective DC conductivity of polymer-graphene composites is modeled by contact resistance and interphase depth. The resistances of polymer layer and graphene nanosheets in the contact spaces define the contact resistance. Also, the effective filler concentration reveals the interphase role in the conductivity. So, the effective conductivity is correlated to the concentration, thickness and conduction of graphene in addition to interphase depth, tunnel resistivity, contact diameter, contact distance and percolation onset. Experimental data of some samples are fitted to the predictions of developed model. The impressions of factors on the effective conductivity are justified supposing the contact resistance and network performance. Thin graphene nanosheets and wide contacts suggest a high effective conductivity. In addition, the effective conductivity directly links to the graphene loading, while the significant graphene conduction cannot affect it. The small contact area between nanosheets weakens the conductivity, but a high effective conductivity is achieved by big contact area and poor percolation onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings can be shared as requested.

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Google Scholar 

  2. L. Shi, M. Liu, W. Zhang, W. Ren, S. Zhou, Q. Zhou, Y. Yang, and Z. Ren, JOM 74, 3082 (2022).

    Google Scholar 

  3. P. Kumar, J.K. Ratan, and N. Divya, JOM 74, 1828 (2022).

    Google Scholar 

  4. J.R. Junaqani, M. Kazazi, M.J.S. Shahraki, and M.D. Chermahini, JOM 74, 808 (2022).

    Google Scholar 

  5. A. Owhal, A.D. Pingale, S. Khan, S.U. Belgamwar, P.N. Jha, and J.S. Rathore, JOM 73, 4270 (2021).

    Google Scholar 

  6. S. Ghanbari, F. Ahour, and S. Keshipour, Sci. Rep. 12, 1 (2022).

    Google Scholar 

  7. M.S. Alborzi, and A. Rajabpour, Eur. Phys. J. Plus 136, 959 (2021).

    Google Scholar 

  8. S. Bahrami, N. Baheiraei, and M. Shahrezaee, Sci. Rep. 11, 1 (2021).

    Google Scholar 

  9. M. Azizi-Lalabadi, and S.M. Jafari, Adv. Colloid Interface Sci. 292, 102416 (2021).

    Google Scholar 

  10. M. Hassanzadeh-Aghdam, Compos. Sci. Technol. 209, 108791 (2021).

    Google Scholar 

  11. A. Khosrozadeh, R. Rasuli, H. Hamzeloopak, and Y. Abedini, Sci. Rep. 11, 1 (2021).

    Google Scholar 

  12. F. Mahdi, L. Naji, and A. Rahmanian, Surf. Interfaces 23, 100925 (2021).

    Google Scholar 

  13. J. Li, Y. Huang, Y. Zhou, and F. Zhu, JOM 74, 3518 (2022).

    Google Scholar 

  14. Z. Lin, X. Ren, J. Liu, Y. Sui, C. Qin, and X. Jiang, JOM 73, 834 (2021).

    Google Scholar 

  15. D. Khedri, A.H. Hassani, E. Moniri, H.A. Panahi, and M. Khaleghian, Surf. Interfaces 35, 102439 (2022).

    Google Scholar 

  16. M. Pagnola, F. Morales, P. Tancredi, and L. Socolovsky, JOM 73, 2471 (2021).

    Google Scholar 

  17. A. Patil, M.S.K.K.Y. Nartu, F. Ozdemir, R. Banerjee, R.K. Gupta, and T. Borkar, JOM 74, 4583 (2022).

    Google Scholar 

  18. X. Ren, Z. Yuan, Z. Lin, X. Lv, C. Qin, and X. Jiang, JOM 73, 4091 (2021).

    Google Scholar 

  19. Y. Zhang, J. Qin, M. Batmunkh, and Y.L. Zhong, JOM 73, 2531 (2021).

    Google Scholar 

  20. Y. Zare, and K.Y. Rhee, J. Phys. Chem. Solids 131, 15 (2019).

    Google Scholar 

  21. Y. Zare, K.Y. Rhee, and S.-J. Park, Res. Phys. 14, 102406 (2019).

    Google Scholar 

  22. C. Feng, and L. Jiang, Compos. A Appl. Sci. Manuf. 47, 143 (2013).

    Google Scholar 

  23. T. Takeda, Y. Shindo, Y. Kuronuma, and F. Narita, Polymer 52, 3852 (2011).

    Google Scholar 

  24. S. Colonna, O. Monticelli, J. Gomez, C. Novara, G. Saracco, and A. Fina, Polymer 102, 292 (2016).

    Google Scholar 

  25. M. Haghgoo, R. Ansari, and M. Hassanzadeh-Aghdam, Compos. A Appl. Sci. Manuf. 152, 106716 (2022).

    Google Scholar 

  26. Y. Zare, and K.Y. Rhee, Sci. Rep. 12, 1 (2022).

    Google Scholar 

  27. M.L. Clingerman, J.A. King, K.H. Schulz, and J.D. Meyers, J. Appl. Polym. Sci. 83, 1341 (2002).

    Google Scholar 

  28. L. Chang, K. Friedrich, L. Ye, and P. Toro, J. Mater. Sci. 44, 4003 (2009).

    Google Scholar 

  29. S. Kara, E. Arda, F. Dolastir, and Ö. Pekcan, J. Colloid Interface Sci. 344, 395 (2010).

    Google Scholar 

  30. F. Du, R.C. Scogna, W. Zhou, S. Brand, J.E. Fischer, and K.I. Winey, Macromolecules 37, 9048 (2004).

    Google Scholar 

  31. N. Ryvkina, I. Tchmutin, J. Vilčáková, M. Pelíšková, and P. Sáha, Synth. Met. 148, 141 (2005).

    Google Scholar 

  32. G. Ambrosetti, C. Grimaldi, I. Balberg, T. Maeder, A. Danani, and P. Ryser, Phys. Rev. B 81, 155434 (2010).

    Google Scholar 

  33. N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, Acta Mater. 56, 2929 (2008).

    Google Scholar 

  34. Y. Zare, K.Y. Rhee, and S.-J. Park, J. Ind. Eng. Chem. 86, 53 (2020).

    Google Scholar 

  35. R. Razavi, Y. Zare, and K.Y. Rhee, RSC Adv. 7, 50225 (2017).

    Google Scholar 

  36. Y. Zare, H. Garmabi, and K.Y. Rhee, Mater. Chem. Phys. 206, 243 (2018).

    Google Scholar 

  37. M. Mohiuddin, and S.V. Hoa, Compos. Sci. Technol. 79, 42 (2013).

    Google Scholar 

  38. Y. Zare, and K.Y. Rhee, Eng. Sci. Technol. Int. J. 24, 605 (2021).

    Google Scholar 

  39. Y. Zare, J. Colloid Interface Sci. 467, 165 (2016).

    Google Scholar 

  40. Y. Zare, RSC Adv. 5, 95532 (2015).

    Google Scholar 

  41. W. Peng, S. Rhim, Y. Zare, and K.Y. Rhee, Polym. Compos. 40, 1117 (2019).

    Google Scholar 

  42. Y. Zare, Int. J. Adhes. Adhes. 54, 67 (2014).

    Google Scholar 

  43. Y. Zare, and K.Y. Rhee, Nanoscale Res. Lett. 12, 1 (2017).

    Google Scholar 

  44. M. Martin-Gallego, M. Bernal, M. Hernandez, R. Verdejo, and M. Lopez-Manchado, Eur. Polym. J. 49, 1347 (2013).

    Google Scholar 

  45. H. Shin, S. Yang, J. Choi, S. Chang, and M. Cho, Chem. Phys. Lett. 635, 80 (2015).

    Google Scholar 

  46. V. Favier, J. Cavaille, G. Canova, and S. Shrivastava, Polym. Eng. Sci. 37, 1732 (1997).

    Google Scholar 

  47. Y. Zare, and K. Rhee, Phys. Mesomech. 21, 351 (2018).

    Google Scholar 

  48. Y. Zare, and K.Y. Rhee, Polym. Compos. 41, 748 (2020).

    Google Scholar 

  49. Y. Zare, and K.Y. Rhee, RSC Adv. 8, 30986 (2018).

    Google Scholar 

  50. Y. Zare, K.Y. Rhee, and S.-J. Park, JOM 74, 3059 (2022).

    Google Scholar 

  51. E. Messina, N. Leone, A. Foti, G. Di Marco, C. Riccucci, G. Di Carlo, F. Di Maggio, A. Cassata, L. Gargano, and C. D’Andrea, ACS Appl. Mater. Interfaces 8, 23244 (2016).

    Google Scholar 

  52. G. Seidel, and A.-S. Puydupin-Jamin, Mech. Mater. 43, 755 (2011).

    Google Scholar 

  53. J. Li, and J.-K. Kim, Compos. Sci. Technol. 67, 2114 (2007).

    Google Scholar 

  54. Y.G. Yanovsky, G. Kozlov, and Y.N. Karnet, Phys. Mesomech. 16, 9 (2013).

    Google Scholar 

  55. J. Li, P.C. Ma, W.S. Chow, C.K. To, B.Z. Tang, and J.K. Kim, Adv. Funct. Mater. 17, 3207 (2007).

    Google Scholar 

  56. L. Xu, G. Chen, W. Wang, L. Li, and X. Fang, Compos. A Appl. Sci. Manuf. 84, 472 (2016).

    Google Scholar 

  57. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Nature 442, 282 (2006).

    Google Scholar 

  58. C. Gao, S. Zhang, F. Wang, B. Wen, C. Han, Y. Ding, and M. Yang, ACS Appl. Mater. Interfaces 6, 12252 (2014).

    Google Scholar 

  59. M. Goumri, B. Lucas, B. Ratier, and M. Baitoul, Opt. Mater. 60, 105 (2016).

    Google Scholar 

  60. S. Maiti, S. Suin, N.K. Shrivastava, and B. Khatua, J. Appl. Polym. Sci. 130, 543 (2013).

    Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasser Zare or Kyong Yop Rhee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, Y., Rhee, K.Y. Effective DC Conductivity of Polymer Composites Containing Graphene Nanosheets. JOM 75, 4485–4493 (2023). https://doi.org/10.1007/s11837-023-05758-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05758-x

Navigation