Skip to main content
Log in

Small Scale Creep Testing of 14YWT via In-situ Transmission Electron Microscopy Irradiation and Nanoindentation

  • Mesoscale Materials Science: Experiments and Modeling
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The next generation of nuclear materials must withstand severe operating conditions including high temperatures and irradiation exposure. Oxide dispersion strengthened steels, especially 14YWT, have shown promise as a durable material under these conditions. Understanding the irradiation-enhanced creep of structural components is fundamental to evaluating their suitability for applications in reactor environments. Ion irradiations can be used to expedite irradiation testing, but they have a restricted depth of penetration, limiting the characterization of changes to the material’s properties. Small-scale mechanical testing combined with ion beam irradiations has the potential to evaluate the irradiation-enhanced creep of materials. In this study, in-situ transmission electron microscopy nanopillar creep studies on 14YWT were performed with simultaneous ion beam irradiation. The irradiation increases the measured strain rate by an order of magnitude. Variable temperature ex-situ nanoindentation creep studies were performed between room temperature and 1073 K on control samples of 14YWT; observations indicated that there was a change in the deformation mechanism between 873 K and 1073 K, which agrees well with macro-scale mechanical testing. These results validate continued research into applying these meso-scale testing techniques to nuclear materials in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data available upon request.

References

  1. P. Yvon (ed.), Structural Materials for Generation IV Nuclear Reactors, (Woodhead Publishing, 2017)

  2. R. Klueh, J. Shingledecker, R. Swindeman, and D. Hoelzer, J. Nucl. Mater. 341(2–3), 103 (2005).

    Google Scholar 

  3. K. Verhiest, A. Almazouzi, N. De Wispelaere, R. Petrov, and S. Claessens, J. Nucl. Mater. 285(2), 308 (2009).

    Google Scholar 

  4. R. Rebak, JOM 66, 2424 (2014).

    Google Scholar 

  5. J.-H. Kim, T. Byun, D. Hoelzer, S.-W. Kim, and B. Lee, Mater. Sci. Eng. A 559, 101 (2013).

    Google Scholar 

  6. C. Harvey, O. El Atwani, C. Lavendar, M. McCoy, D. Sornin, J. Lewandowski, S. Maloy, S. Pathak, and H. Kim, Mater. Charact. 171, 110744 (2021).

    Google Scholar 

  7. M. Auger, D. Hoelzer, K. Field, and M. Moody, J. Nucl. Mater. 528, 151852 (2020).

    Google Scholar 

  8. Z. Jiang, Q. Zeng, O. Anderoglu, S. Maloy, G. Odette, K. Ehmann, and J. Coa, Mater. Sci. Eng. A 745, 484 (2019).

    Google Scholar 

  9. E. Aydogan, O. El-Atwani, M. Li, and S. Maloy, Mater. Charact. 170, 110686 (2020).

    Google Scholar 

  10. L. Zhou, S. Feng, M. Sun, B. Xu, and D. Li, J. Mater. Sci. Technol. 35(8), 1671 (2019).

    Google Scholar 

  11. E. Aydogen, J. Weaver, U. Carvajal-Nunez, M. Schneider, J. Gigax, D. Krumwiede, P. Hosemann, T. Saleh, N. Mara, D. Hoelzer, B. Hilton, and S. Maloy, Acta Mater. 167, 181 (2019).

    Google Scholar 

  12. E. Aydogan, O. El-Atwani, S. Takajo, S. Vogel, and S. Maloy, Acta Mater. 148, 467 (2018).

    Google Scholar 

  13. D. McClintock, D. Hoelzer, M. Sokolov, and R. Nanstad, J. Nucl. Mater. 386–388, 307 (2009).

    Google Scholar 

  14. J. Chen, and W. Hoffelner, J. Nucl. Mater. 392(2), 360 (2009).

    Google Scholar 

  15. M. Alam, S. Pal, K. Fields, S. Maloy, D. Hoelzer, and G. Odette, Mater. Sci. Eng. A 675, 437 (2016).

    Google Scholar 

  16. Z. Wu, L. Xu, H. Chen, L. Liang, J. Du, Y. Wang, S. Zhang, X. Cai, B. Sun, J. Zhang, T. Shen, J. Wang, and E. Fu, J. Nucl. Mater. 559, 153418 (2022).

    Google Scholar 

  17. A. Mairov, D. Frazer, P. Hosemann, and K. Kridharan, Scr. Mater. 162, 156 (2019).

    Google Scholar 

  18. J. Matthews, and M. Finnis, J. Nucl. Mater. 159, 257 (1988).

    Google Scholar 

  19. E. Gilbert, and B. Chin, Nucl. Technol. 52, 273 (1981).

    Google Scholar 

  20. M. Toloczko, D. Gelles, F. Garner, R. Kurtz, and K. Abe, J. Nucl. Mater. 329–333, 352 (2004).

    Google Scholar 

  21. M. Toloczko, F. Garner, and C. Eiholzer, J. Nucl. Mater. 212–215, 604 (1994).

    Google Scholar 

  22. P. Hosemann, C. Shin, and D. Kiener, J. Mater. Res. 2015, 1231 (2015).

    Google Scholar 

  23. R. Parrish, D. Bufford, D. Frazer, C. Taylor, J. Gutierrez-Kolar, D. Buller, B. Boyce, and K. Hattar, Microsc. Today 29, 28 (2021).

    Google Scholar 

  24. G. Jawaharram, P. Price, C. Barr, K. Hattar, R. Averback, and S. Dillon, Scr. Mater. 148, 1 (2018).

    Google Scholar 

  25. S. Dillon, D. Bufford, G. Jawaharram, X. Liu, C. Lear, K. Hattar, and R. Averback, J. Nucl. Mater. 490, 59 (2017).

    Google Scholar 

  26. J.F. Ziegler, SRIM—the stopping and range of ions in matter, srim.org

  27. D. Frazer, B. Maiorov, U. Carvajal-Nunez, J. Evans, E. Kardoulaki, J. Dunwoody, T. Saleh, and J. White, J. Nucl. Mater. 554, 153035 (2021).

    Google Scholar 

  28. W. Oliver, and G. Pharr, J. Mater. Res. 7, 1564 (1992).

    Google Scholar 

  29. J. Wheeler, and J. Michler, Rev. Sci. Instr. 84, 101301 (2013).

    Google Scholar 

  30. D. Frazer, B. Shaffer, B. Gong, P. Peralta, J. Lian, and P. Hosemann, J. Nucl. Mater. 545, 152605 (2021).

    Google Scholar 

  31. J. Dean, A. Bradbury, G. Aldrich-Smith, and T. Clyne, Mech. Mater. 65, 124 (2013).

    Google Scholar 

  32. C. Su, E. Herbet, S. Sohn, J. LaManna, W. Oliver, and G. Pharr, J. Mech. Phys. Solids. 61, 517 (2013).

    Google Scholar 

  33. M. Dade, J. Malaplate, J. Garnier, F. De Geuser, F. Barcelo, P. Wident, and A. Deschamps, Acta Mater. 127, 167 (2017).

    Google Scholar 

  34. A. Prasitthipayong, D. Frazer, A. Kareer, M. Abad, A. Garner, B. Joni, T. Ungar, G. Ribarik, M. Preuss, L. Balogh, S. Tumey, A. Minor, and P. Hosemann, Nucl. Mater. Ener. 16, 34 (2018).

    Google Scholar 

  35. D. Hoelzer, K. Unocic, M. Sokolov, and T. Byun, J. Nucl. Mater. 471, 251 (2016).

    Google Scholar 

  36. D. Krumwiede, T. Yamamoto, T. Saleh, S. Maloy, G. Odette, and P. Hosemann, J. Nucl. Mater. 504, 135 (2018).

    Google Scholar 

  37. A. Prasitthipayong, S. Vachhani, S. Tumey, A. Minor, and P. Hosemann, Acta Mater. 114, 896 (2018).

    Google Scholar 

  38. P. Sudharshan Phani, and W. Oliver, Acta Mater. 111, 31 (2016).

    Google Scholar 

  39. C. Wang, Y. Lai, J. Huang, and T. Nieh, Scr. Mater. 62, 175 (2010).

    Google Scholar 

  40. C. Wang, T. Mukai, and T. Nieh, J. Mater. Res. 24(5), 1615 (2009).

    Google Scholar 

  41. C. Zakine, C. Prioul, and D. Francois, Mater. Sci. Eng. A A192, 102 (1996).

    Google Scholar 

  42. T. Hayashi, P. Sarosi, J. Schneibel, and M. Mills, Acta Mater. 56, 1407 (2008).

    Google Scholar 

  43. J. Kim, T. Byun, and D. Hoelzer, J. Nucl. Mater. 407(3), 143 (2010).

    Google Scholar 

  44. T. Byun, J. Kim, J. Yoon, and D. Hoelzer, J. Nucl. Mater. 407, 78 (2010).

    Google Scholar 

  45. X. Long, Z. Shen, Q. Jia, J. Li, R. Dong, Y. Su, and X. Yang, Mech. Mater. 175, 104485 (2022).

    Google Scholar 

  46. C.A. Schuh, Mater. Today 9, 32 (2006).

    Google Scholar 

  47. S. Briggs, M. Steckbeck, N. Heckman, T. Furnish, D. Bufford, D. Buller, B. Boyce, and K. Hattar, Nucl. Instr. Methods Phys. Res. Sect. B Beam Inter. Mater. Atoms 509, 39 (2021).

    Google Scholar 

Download references

Acknowledgement

This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, royalty-free, paid-up, irrevocable, world-wide license to publish or reproduce the published from of this manuscript, or allow others to do so, for United States Government purposes.

Funding

The authors would like to thank NSUF RTE proposal 1648 for funding the research at the Ion Beam Lab at Sandia National Laboratories. In addition, David Frazer would like to thank the Seaborg postdoctoral fellowship for funding. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE’s National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the U.S. DOE or the United States Government. Work supported through the INL Laboratory Directed Research& Development (LDRD) Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517.

Author information

Authors and Affiliations

Authors

Contributions

DF: conceptualization, methodology, investigation, resources, writing—original draft preparation, funding acquisition RJP: methodology, investigation, writing—review and editing KH: methodology, investigation, writing—review and editing, supervision TAS: investigation, resources, writing—review and editing, funding acquisition SAM: investigation, resources, writing—review and editing JTW: methodology, investigation, resources, writing—review and editing, funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to D. Frazer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frazer, D., Parrish, R.J., Hattar, K. et al. Small Scale Creep Testing of 14YWT via In-situ Transmission Electron Microscopy Irradiation and Nanoindentation. JOM 75, 2451–2461 (2023). https://doi.org/10.1007/s11837-023-05752-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05752-3

Navigation