Skip to main content
Log in

Enhancement of the Tensile Strength of Titanium/Aluminum Triple-layer Composite Panels Using Steel Fiber

  • Solid-state Processing of Light Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, steel fiber-reinforced titanium/aluminum composite plates were prepared using the explosive welding method. The smooth particle hydrodynamics method (SPH) in AUTODYN software was used to simulate the effect of steel fibers on the movement pattern of metal jet particles and the thermodynamics of the bonding interface during the preparation of the steel fiber-reinforced titanium/aluminum composite plates. The results showed that addition of steel fibers blocked the continuous impact of the jet particles on the metal surface, resulting in accumulation of high-temperature molten particles around the steel fibers. This effect created an environment of extremely high heat, high pressure, and high strain rates. Subsequent characterization analysis through various tests showed the simulation results were consistent with the experimental results. Addition of steel fibers had insignificant effect on the bond quality of the metal composite plate. Tensile experiments showed that addition of steel fibers significantly improved the tensile properties of the titanium/aluminum composite plate. A minimum increase of 30.23% was observed for a steel fiber diameter of 0.35 mm, and a maximum increase of 50% was observed for a steel fiber diameter of 0.5 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Zeng, X. Li, X. Chen, X. Wang, and H. Yan, Weld World. 63, 967. (2019)

    Article  Google Scholar 

  2. X. Wu, C. Shi, Z. Fang, S. Lin, and Z. Sun, Mater Design. 197, 109279. (2021)

    Article  Google Scholar 

  3. H. Zhang, K.X. Jiao, J.L. Zhang, and J. Liu, Mat. Sci. Eng. A-Struct. 731, 278. (2018)

    Article  Google Scholar 

  4. F. Grignon, D. Benson, K.S. Vecchio, and M.A. Meyers, Int. J. Impact Eng. 30, 1333. (2004)

    Article  Google Scholar 

  5. A.B. Durgutlu, F. Gulenc, and F. Findik, Mater Design. 26, 497. (2005)

    Article  Google Scholar 

  6. I. Kwiecien, P. Bobrowski, M. Janusz-Skuza, A. Wierzbicka-Miernik, and J. Wojewoda-Budka, J. Mater. Sci. 55, 9163. (2020)

    Article  Google Scholar 

  7. T.T. Zhang, W.X. Wang, J. Zhou, X.Q. Cao, R.S. Xie, and Y. Wei, Acta Metall Sin-Engl. 30, 983. (2017)

    Article  Google Scholar 

  8. Q. Chu, X. Tong, S. Xu, M. Zhang, J. Li, F. Yan, and C. Yan, J. Mater. Eng. Perform. 29, 78. (2020)

    Article  Google Scholar 

  9. H.B. Liu, J. Tao, P.Z. Zhang, and X. Jiang, Mater. Guide. 20, 47. (2006)

    Google Scholar 

  10. J.H. Yan, J.T. Liu, and X.Z. Wang, Mater. Dev. Appl. 35, 75. (2020)

    Google Scholar 

  11. Z. Qiang, L. Rui, P.W. Chen, and Z. Lei, Mat. Sci. Eng. A-Struct. 820, 141559. (2021)

    Article  Google Scholar 

  12. M. Yang, J.F. Xu, D.G. Chen, H.G. Ma, W.S. Zhao, B.Y. Zhang, and J. Tian, Appl. Surf. Sci. 566, 150703. (2021)

    Article  Google Scholar 

  13. Y.M. Zheng, Explosive welding and explosive composite material (National Defense Industry Press, Beijing, 2017), pp 310–316.

    Google Scholar 

  14. H. Mahfuz, Y. Zhu, and A. Haque, Int. J. Impact Eng. 24, 203. (2000)

    Article  Google Scholar 

  15. J.Y. Xu and B.H. Gu, J. Ballist. 14, 39. (2002)

    Google Scholar 

  16. B.H. Gu and J.Y. Xu, J. Compos. Mater. 21, 84. (2004)

    Google Scholar 

  17. N. Zhou, J.X. Wang, and R. Yang, Combust Explo Shock. 49, 374. (2013)

    Article  Google Scholar 

  18. Z.M. Zheng and Z.S. Yang, Explosive processing (National Defense Industry Press, Beijing, 1981), pp 384–340.

    Google Scholar 

  19. A. Durgutlu, B. Gulenc, and F. Findik, Mater Design. 26, 497. (2005)

    Article  Google Scholar 

  20. Y.K. Wu, R. Wu, and M.G. Zhang, J. Manuf. Process. 77, 339. (2022)

    Article  Google Scholar 

  21. Z.L. Zhang and M.B. Liu, J. Manuf. Process. 41, 208. (2019)

    Article  Google Scholar 

  22. J.X. Ye, Welding. 12, 34. (2008)

    Google Scholar 

  23. Z.H. Zhang and J.X. Xue, Univ. Technol. (Natural Science Edition) 47, 138. (2019)

    Google Scholar 

  24. M. Gloc, M. Wachowski, T. Plocinski, and K.J. Kurzydlowski, J. Alloy Compd. 671, 446. (2016)

    Article  Google Scholar 

  25. Yu. Lu, H. Li, L. Yang, H. Wei, and Y. Gao, J. Weld. 33, 25. (2012)

    Google Scholar 

  26. T.N. Prasanthi, C. Sudha, S. Ravikirana, and S. Saroja, Mater Design. 93, 180. (2016)

    Article  Google Scholar 

  27. C. Borchers, J. Arlt, C. Nowak, F. Grtner, M. Ha, and H. Kreye, Scripta Mater. 199, 113860. (2021)

    Article  Google Scholar 

  28. M. Yang, J. Xu, H. Ma, M. Lei, M. Ni, Z. Shen, B. Zhang, and J. Tian, Compos Part B-Eng. 212, 108685. (2021)

    Article  Google Scholar 

  29. Q. Zhou, R. Liu, C. Ran, K.S. Fan, J. Xie, and P.G. Chen, Mat. Sci. Eng. A-Struct. 830, 142260. (2022)

    Article  Google Scholar 

  30. M. Acarer, B. Gulenc, and F. Findik, Mater Design. 24, 659. (2003)

    Article  Google Scholar 

  31. M. Yang, H. Ma, Z. Shen, D.G. Cheng, and Y.X. Deng, T Nonferr Metal Soc. 29, 680. (2019)

    Article  Google Scholar 

  32. Q. Chu, M. Zhang, J. Li, and C. Yan, Mat. Sci. Eng. A-Struct. 689, 323. (2017)

    Article  Google Scholar 

  33. T. Lee, A. Nassiri, D. Dittrich, A. Vivek, and G.S. Daehn, Scripta Mater. 178, 203. (2020)

    Article  Google Scholar 

  34. I.A. Bataev, S. Tanaka, Q. Zhou, D.V. Lazurenko, A.M.J. Junior, A.A. Bataev, K. Hokamoto, A. Mori, and P. Chen, Mater Design. 169, 1. (2019)

    Google Scholar 

  35. I.A. Bataev, D.V. Lazurenko, S. Tanaka, K. Hokamoto, A.A. Bataev, Y. Guo, and A.M. Jorge, Acta Mater. 135, 277. (2017)

    Article  Google Scholar 

  36. J. Song, A. Kostka, M. Veehmayer, and D. Raabe, Mat. Sci. Eng. A-Struct. 528, 2641. (2011)

    Article  Google Scholar 

  37. T. Wu and C.L. Yang, Vacuum 197, 110817. (2022)

    Article  Google Scholar 

  38. W. Yuxin, H.G. Beom, S. Ming, and M. Song, Int. J. Impact Eng. 38, 51. (2011)

    Article  Google Scholar 

  39. Z.R. Sun, C.G. Shi, H. Shi, F. Li, L. Gao, and G.Z. Wang, Mater Design. 195, 109027. (2020)

    Article  Google Scholar 

  40. Y.M. Zheng, R.G. Huang, and S.H. Chen, Eng. Blasting. 6, 5. (2000)

    Google Scholar 

Download references

Acknowledgements

The authors are gratefully for the financial support from the National Natural Science Youth Fund (Grant Nos. 12002319 and 11802274); Science and Technology Innovation Project of Colleges and Universities in Shanxi Province (Grant Nos. 2020l0273 and 2020l0312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanxiang Guo.

Ethics declarations

Conflict of Interest

All authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Chen, Y., Gao, Y. et al. Enhancement of the Tensile Strength of Titanium/Aluminum Triple-layer Composite Panels Using Steel Fiber. JOM 75, 2897–2908 (2023). https://doi.org/10.1007/s11837-022-05600-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05600-w

Keywords

Navigation