Skip to main content
Log in

1700°C Isothermal Phase Diagram of the MgO-Al2O3-TiO2 System in Air Related to Pseudobrookite and Spinel Ceramics

  • High-Temperature Phases & Processes for Enabling Cleaner Production of Metals and Energy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The spinel and pseudobrookite type ceramic materials have been widely used in different industries including ceramics, refractory and metallurgy. Therefore, their physicochemical properties are important for the development of related processes. In this regard, it is important to understand the formation principles of the spinel and pseudobrookite solid solutions. In the present work, the equilibrium phase relations for the MgO-Al2O3-TiO2 system at 1700°C in air were experimentally determined by high-temperature equilibration-quenching technique followed by XRD and SEM–EDS analyses. The pseudobrookite solid solution was found to be coexisting with spinel solid solution and rutile phase, respectively. The composition evolution and formation principles of the pseudobrookite and spinel solid solutions were further elucidated from the corresponding crystal structures and composition relations. Furthermore, great discrepancies were observed when the 1700°C isotherm from the present work was compared with the isotherm simulated by FactSage 8.1. The evolution of the solid solution existing area was intuitively presented with reference to the experimental data from the literature. The results from present work are important for the development of spinel and pseudobrookite solid solution ceramics as well as the optimization of the thermodynamic database for oxide systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Liu, K. Sha, Y.Q. Jia, Y.H. Huang, C.C. Hu, L. Li, D.W. Wang, D. Zhou, and K.X. Song, J. Eur. Ceram. Soc. 41, 4835 (2021).

    Article  Google Scholar 

  2. D.H. Jin, B. Liu, K.X. Song, K.W. Xu, Y.H. Huang, C.C. Hu, and Y.Y. Hu, J. Alloys Compd. 886, 161141 (2021).

    Article  Google Scholar 

  3. B. Liu, L. Li, K.X. Song, M.M. Mao, Z. Lu, G. Wang, L. Li, D. Wang, D. Zhou, A. Feteira, and I.M. Reaney, J. Eur. Ceram. Soc. 41, 1726 (2021).

    Article  Google Scholar 

  4. S. Takahashi, A. Kan, and H. Ogawa, J. Eur. Ceram. Soc. 37, 1001 (2017).

    Article  Google Scholar 

  5. O. Padmaraj, M. Venkateswarlu, and N. Satyanarayana, Ceram. Int. 41, 3178 (2015).

    Article  Google Scholar 

  6. H. Yu, T. Luo, L. He, and J. Liu, Adv. Appl. Ceram. 118, 98 (2019).

    Article  Google Scholar 

  7. A. Belous, O. Ovchar, D. Durilin, M.M. Krzmanc, M. Valant, and D. Suvorov, J. Am. Ceram. Soc. 89, 3441 (2006).

    Article  Google Scholar 

  8. T. Qin, C. Zhong, Y. Qin, B. Tang, and S. Zhang, Ceram. Int. 46, 19046 (2020).

    Article  Google Scholar 

  9. X. Yang, Y. Lai, Y. Zeng, F. Yang, F. Huang, B. Li, F. Wang, C. Wu, and H. Su, J. Alloys Compd. 898, 162905 (2022).

    Article  Google Scholar 

  10. Y. Suzuki, and Y. Shinoda, Sci. Technol. Adv. Mater. 12, 034301 (2011).

    Article  Google Scholar 

  11. T. Shimaz, M. Miura, N. Isu, T. Ogawa, K. Ota, H. Maeda, and E.H. Ishida, Metall. Mater. Trans. A 487, 340 (2008).

    Google Scholar 

  12. R. Papitha, M.B. Suresh, D. Das, and R. Johnson, Process Appl. Ceram. 7, 143 (2013).

    Article  Google Scholar 

  13. S. Bueno, R. Moreno, and C. Baudin, J. Eur. Ceram. Soc. 24, 2785 (2004).

    Article  Google Scholar 

  14. K. Kornaus, P. Rutkowski, R. Lach, and A. Gubernat, J. Eur. Ceram. Soc. 41, 1498 (2021).

    Article  Google Scholar 

  15. L. Giordano, M. Viviani, C. Bottino, M.T. Buscaglia, V. Buscaglia, and P. Nanni, J. Eur. Ceram. Soc. 22, 1811 (2002).

    Article  Google Scholar 

  16. G.L.M. Kristen, H. Brosnan, and D.K. Agrawal, J. Am. Ceram. Soc. 86, 1307 (2004).

    Google Scholar 

  17. I.H. Jung, S.A. Decterov, and A.D. Pelton, J. Phase Equilib. Diff. 25, 329 (2004).

    Article  Google Scholar 

  18. A.F. Henriksen, and W.D. Kingery, Ceramurgia Int. 5, 11 (1979).

    Article  Google Scholar 

  19. M. Ilatovskaia, I. Saenko, G. Savinykh, and O. Fabrichnaya, J. Am. Ceram. Soc. 101, 5198 (2018).

    Article  Google Scholar 

  20. I. Shindo, J. Cryst. Growth 50, 839 (1980).

    Article  Google Scholar 

  21. Y.J. Park, W.Y. Kim, and Y.B. Kang, J. Eur. Ceram. Soc. 41, 7362 (2021).

    Article  Google Scholar 

  22. A. Spencer, Oxid. Met 35, 53 (1991).

    Article  Google Scholar 

  23. G.P. Boden, and F.P. Glasser, Trans. J. Br. Ceram. Soc 72, 215 (1973).

    Google Scholar 

  24. J. Hauck, J. Solid State Chem. 36, 52 (1981).

    Article  Google Scholar 

  25. L. Kaufman, Physica B+C (Amsterdam) 150, 99 (1988).

    Article  Google Scholar 

  26. X. Wan, J. Shi, Y. Qiu, M. Chen, J. Li, C. Liu, P. Taskinen, and A. Jokilaakso, Ceram. Int. 47, 24802 (2021).

    Article  Google Scholar 

  27. Y. Li, Y. Qiu, J. Shi, B. Zhang, F. Meng, J. Li, and C. Liu, ACS Omega 6, 21465 (2021).

    Article  Google Scholar 

  28. X. Wan, and J. Shi, J. Alloys Compd. 847, 156472 (2020).

    Article  Google Scholar 

  29. X. Wan, M. Chen, Y. Qiu, J. Shi, J. Li, C. Liu, P. Taskinen, and A. Jokilaakso, Ceram. Int. 47, 11176 (2021).

    Article  Google Scholar 

  30. M. Chen, J. Shi, P. Taskinen, and A. Jokilaakso, Ceram. Int. 46, 9183 (2020).

    Article  Google Scholar 

  31. Y. Qiu, J. Shi, B. Yu, C. Hou, J. Dong, S. Li, Y. Zhai, J. Li, and C. Liu, J. Am. Ceram. Soc. https://doi.org/10.1111/jace.18642 (2022).

    Article  Google Scholar 

  32. I.H. Jung, and M.A. Van Ende, Metall. Mater. Trans. B. 51, 1851 (2020).

    Article  Google Scholar 

  33. B.H. Toby, J. Appl. Cryst. 38, 1040 (2005).

    Article  Google Scholar 

  34. M. A. Petrova, A.S. Novikova, and V.F. Popova, J. Mater. Res. Technol. 12, 2584 (1997).

  35. H. Li, R. Xiang, X. Chen, H. Hua, S. Yu, B. Tang, G. Chen, and S. Zhang, Ceram Int. 46, 4235 (2020).

    Article  Google Scholar 

  36. T. Zienert, and O. Fabrichnaya, Calphad 40, 1 (2013).

    Article  Google Scholar 

  37. Q. Deng, C. Huang, H. Wang, L. Zhao, and C. Shen, J. Mater. Sci. 29, 4035 (2017).

    Google Scholar 

  38. W. Lei, W.Z. Lu, D. Liu, and J.H. Zhu, J. Am. Ceram. Soc. 92, 105 (2009).

    Article  Google Scholar 

  39. T. Yamanaka, J. Min. Soc. Jpn. 16, 221 (1983).

    Google Scholar 

  40. E.P.T. Barth, Z. Kristallogr. 82, 325 (1932).

    Article  Google Scholar 

  41. R.L.B. Morosin, Acta Crystallogr. B 28, 1040 (1972).

    Article  Google Scholar 

  42. R.M.H. Son, B. Kim, Y. Suzuki, and J. Ceram, Soc. Jpn. 124, 838 (2016).

    Google Scholar 

  43. M. Sobhani, T. Ebadzadeh, and M.R. Rahimipour, Theor. Appl. Fract Mech. 85, 159 (2016).

    Article  Google Scholar 

  44. A. Shokuhfar, M.N. Samani, N. Naserifar, P. Heidary, and G. Naderi, Materialwiss. Werkstofftech. 40, 169 (2009).

    Article  Google Scholar 

  45. B.L. Morosin, Acta Crystal. B 28, 1040 (1972).

    Article  Google Scholar 

  46. Y. Ohya, Y. Kawauchi, and T. Ban, J. Ceram. Soc. Jpn. 125, 695 (2017).

    Article  Google Scholar 

  47. M. Ilatovskaia, and O. Fabrichnaya, J. Alloys Compd. 790, 1137 (2019).

    Article  Google Scholar 

  48. D.L. Whitney, Am. Miner. 95, 185 (1994).

    Article  Google Scholar 

  49. P.G. Eriksson, Metall. Mater. Trans. B 24, 795 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

This study received financial support from the National Natural Science Foundation of China (No. 52204310), China Postdoctoral Science Foundation (No. 2020TQ0059, No. 2020M570967), The Natural Science Foundation of Liaoning Province (No. 2021-MS-083), The Fundamental Research Funds for the Central Universities (No. N2125010), Open Project Program of Key Laboratory of Metallurgical Emission Reduction & Resources Recycling (Anhui University of Technology), Ministry of Education (No. JKF22-02), Key Laboratory for Anisotropy and Texture of Materials and the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Shi, J., Hou, C. et al. 1700°C Isothermal Phase Diagram of the MgO-Al2O3-TiO2 System in Air Related to Pseudobrookite and Spinel Ceramics. JOM 75, 1982–1992 (2023). https://doi.org/10.1007/s11837-022-05531-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05531-6

Navigation