Skip to main content
Log in

Electromagnetic Twin-Roll Casting of Aluminium Alloy Sheets: An Overview

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Aluminum (Al) alloys have been the most popular choice in various applications to achieve an optimum strength-to-weight ratio. Al sheets/strips products can be economically produced by the twin-roll casting process. However, the cast strips possess several cast defects, which degrade the quality of the products. A detailed study on as-cast TRC strips, i.e., types of defects, reasons of occurrence, and possible remedies is reported and discussed. It has been found that, with the help of an external electromagnetic field, a better-quality Al sheet can be manufactured by a TRC machine. The effects of different types of EMFs on the segregation and grain refinement of TRC Al alloys have been studied and compared. The requirement of EMF depending on various casting factors, like pouring temperature, rolling speed, and alloy composition, is presented and discussed. Various casting parameters and EMF types, and the amount that influences the macro-segregation and grain refinement of various Al alloys, have also been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. R. Kumar, A. Gupta, A. Kumar, R.N. Chouhan, and R.K. Khatirkar, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2018.01.280 (2018).

    Article  Google Scholar 

  2. R. Cook, P.G. Grocock, P.M. Thomas, D.V. Edmonds, and J.D. Hunt, Mater. Process. Technol. 55, 76 (1995).

    Article  Google Scholar 

  3. H. Zhao, P.J. Li, and L.J. He, J. Mater. Process. Technol. 211, 1197 (2011).

    Article  Google Scholar 

  4. Y.S. Lee, H.W. Kim, and J.H. Cho, J. Mater. Process. Technol. https://doi.org/10.1016/j.jmatprotec.2014.11.031 (2015).

    Article  Google Scholar 

  5. R. Wechsler, Scand. J. Metall. https://doi.org/10.1034/j.1600-0692.2003.00636.x (2003).

    Article  Google Scholar 

  6. Y.S. Lee, H.W. Kim, J.H. Cho, and S.H. Chun, Met. Mater. Int. https://doi.org/10.1007/s12540-017-6275-y.07 (2017).

    Article  Google Scholar 

  7. S. Kumar, N. Hari-Babu, G.M. Scamans, and Z. Fan, Mater. Sci. Technol. 27, 1833 (2011).

    Article  Google Scholar 

  8. S. Kumar, N. Hari-Babu, G.M. Samoans, Z. Fan, and K.A.Q.O. Reilly, Metall. Trans. A Phys. Metall. Mater. Sci. Mater. https://doi.org/10.1007/s11661-014-2229-x (2014).

    Article  Google Scholar 

  9. G.I. Eskin, Ultrason. Sonochem. 1(1), S59 (1994).

    Article  Google Scholar 

  10. T. Kozuka, T. Yuhara, I. Muchi, and S. Asai, ISIJ Int. 29(12), 1022 (1989).

    Article  Google Scholar 

  11. M. McBrien, and J. Allwood, Mater. Sci. Forum. https://doi.org/10.4028/www.scientific.net/MSF.765.87 (2013).

    Article  Google Scholar 

  12. C. He, Y. Li, J. Li, G. Xu, Z. Wang, and D. Wu, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2019.138328 (2019).

    Article  Google Scholar 

  13. V. Metan, and K. Eigenfeld, Eur. Phys. J. Spec. Top. 220, 139 (2013).

    Article  Google Scholar 

  14. C. Vives, and C. Perry, Int. J. Heat Mass Transf. 29, 21 (1986).

    Article  Google Scholar 

  15. H. Wang, L. Zhou, Y. Zhang, Y. Cai, and J. Zhang, J. Mater. Process. Technol. https://doi.org/10.1016/j.jmatprotec.2016.02.0 (2016).

    Article  Google Scholar 

  16. M. Okayasu, R. Sato, S. Takasu, A. Niikura, and T. Shiraishi, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2011.12.018 (2012).

    Article  Google Scholar 

  17. K. Komeda, T. Haga, and S. Kumai, Adv. Mater. Res. 154, 1544 (2011).

    Google Scholar 

  18. B. Hou, Y.C. Li, J.R. Li, and S.S. Xie, Technology of TRC and continuous casting and rolling for aluminum, 1st edn. (Metallurgical Industry Press, Beijing, 2010).

    Google Scholar 

  19. T. Haga, M. Ikawa, H. Watari, and S. Kumai, J. Achiev. Mater. Manuf. Eng. 21, 7 (2007).

    Google Scholar 

  20. D. Wang, and C. Zhou, J. Mater. Process. Technol. 214, 916 (2014).

    Article  Google Scholar 

  21. S. Li, B. Wei, C. Yu, Y. Li, G. Xu, and Y. Li, J. Mater. Res. Technol. https://doi.org/10.1016/j.jmrt.2020.01.025 (2020).

    Article  Google Scholar 

  22. H.W. Kim, J.H. Cho, C.Y. Lim, and S.B. Kang, Key Eng. Mater. 443, 45 (2010).

    Article  Google Scholar 

  23. J.W. Bae, C.G. Kang, and S.B. Kang, J. Mater. Process. Technol. 191, 251 (2007).

    Article  Google Scholar 

  24. H.K. Kim, B.H. Cheon, H.W. Kim, and J.C. Lee, Int. J. Cast Metal. Res. 27, 1 (2014).

    Article  Google Scholar 

  25. B.H. Cheon, H.W. Kim, and J.C. Lee, Mater. Sci. Eng. A 528, 5223 (2011).

    Article  Google Scholar 

  26. T. Haga, K. Tkahashi, M. Ikawaand, and H. Watari, J. Mater. Process. Technol. https://doi.org/10.1016/j.jmatprotec.2004.04.018 (2004).

    Article  Google Scholar 

  27. T. Haga, and S. Suzuki, J. Mater. Process. Technol. 143–144, 895 (2003).

    Article  Google Scholar 

  28. J.P. Martins, A.L.M. Carvalho, and A.F. Padilha, J. Mater. Sci. 44, 2966 (2009).

    Article  Google Scholar 

  29. N.S. Barekar, S. Das, X. Yang, Y. Huang, O. El-Fakir, A.G. Bhagurkar, L. Zhou, and Z. Fan, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2015.10.079 (2016).

    Article  Google Scholar 

  30. Y. Li, T. Jiang, B. Wei, B. Xu, G. Xu, and Z. Wang, Mater. Lett. https://doi.org/10.1016/j.matlet.2019.127287 (2020).

    Article  Google Scholar 

  31. Y. Li, C. He, J. Li, Z. Wang, D. Wu, and G. Xu, Materials (Basel). https://doi.org/10.3390/ma13071713 (2020).

    Article  Google Scholar 

  32. N. Sun, B.R. Patterson, J.P. Suni, E.A. Simielli, H. Weiland, and L.F. Allard, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2005.10.018 (2006).

    Article  Google Scholar 

  33. Y. Birol, J. Alloy Compd. 471, 122 (2009).

    Article  Google Scholar 

  34. Y. Birol, J. Mater. Process. Technol. https://doi.org/10.1016/j.jmatprotec.2007.09.047 (2008).

    Article  Google Scholar 

  35. J.D. Hwang, H.J. Lin, J.D. Hwang, and C.T. Hu, ISIJ Int. https://doi.org/10.2355/isijinternational.35.170 (1995).

    Article  Google Scholar 

  36. Y. Nakaura, A. Watanabe, and K. Ohori, Mater. Trans. https://doi.org/10.2320/matertrans.47.1743 (2006).

    Article  Google Scholar 

  37. X. Su, G.M. Xu, and D.H. Jiang, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2014.01.042 (2014).

    Article  Google Scholar 

  38. D.Q. Zhang, Z.Q. Xu, and Z.J. An, T Nonferr. Metal. Soc. 28, 1128 (2018).

    Google Scholar 

  39. A. Hadadzadeh, M.A. Wells, and J. Magnes, Alloy 1(2), 101 (2013).

    Google Scholar 

  40. Allen V, East DR, Johnson TJ, Borbidge WE, Liang D (2001) Magnesium alloy sheet produced by twin roll casting. In: R. Magnesium technology: proceeding of the symposium, (TMS annual meeting), New orleans, USA, pp. 75–79.

  41. S. Das, N.S. Lim, J.B. Seol, H.W. Kim, and C.G. Park, Mater. Des. https://doi.org/10.1016/j.matdes.2009.08.032 (2010).

    Article  Google Scholar 

  42. A.V. Kuznetsov, Int. J. Heat Mass Transf. 40, 2949 (1997).

    Article  Google Scholar 

  43. T. Haga, and S. Suzuki, J. Mater. Process. Technol. 118, 165 (2001).

    Article  Google Scholar 

  44. T. Haga, J. Mater. Process. Technol. 111, 64 (2001).

    Article  Google Scholar 

  45. H. Westengen, and K. Nes, Twin roll casting of aluminium: the occurrence of structure inhomogeneities and defects in as cast strip, in Essential readings in light metals. ed. by J.F. Grandfield, and D.G. Eskin (Springer, Cham, 2016).

    Google Scholar 

  46. M. Yun, S. Lokyer, and J.D. Hunt, Mater. Sci. Eng. A. https://doi.org/10.1016/S0921-5093(99)00676-0 (2000).

    Article  Google Scholar 

  47. C. Gras, M. Meredith, and J.D. Hunt, J. Mater. Process. Technol. https://doi.org/10.1016/j.jmatprotec.2004.09.084 (2005).

    Article  Google Scholar 

  48. S. Das, N.S. Lim, H.W. Kim, and C.G. Park, Mater. Des. https://doi.org/10.1016/j.matdes.2011.03.057 (2011).

    Article  Google Scholar 

  49. S.X. Zhang, H.M. Myo, K.B. Lim, K.K. Tong, M.S. Yong, and S.F. Pook, J. Mater. Process. Technol. 192, 101 (2007).

    Article  Google Scholar 

  50. A.K. Dahle, and L. Arnberg, Miner. Met. Mater. Soc. 48, 34 (1996).

    Article  Google Scholar 

  51. I. Jin, L.R. Morris, and J.D. Hunt, J. Met. 34, 70 (1982).

    Google Scholar 

  52. Y. Birol, Aluminium 74, 318 (1998).

    Google Scholar 

  53. S. Li, C. He, J. Fu, J. Xu, G. Xu, and Z. Wang, Mater. Charact. https://doi.org/10.1016/j.matchar.2020.110145 (2020).

    Article  Google Scholar 

  54. G. Chen, J.T. Li, Z.K. Yin, and G.M. Xu, Mater. Charact. https://doi.org/10.1016/j.matchar.2017.03.024 (2017).

    Article  Google Scholar 

  55. K.M. Sun, et al., Mater. Lett. https://doi.org/10.1016/j.matlet.2016.12.109 (2017).

    Article  Google Scholar 

  56. M. Slapakova, M. Zimina, S. Zaunschirm, J. Kastner, J. Bajer, and M. Cieslar, Mater. Charact. https://doi.org/10.1016/j.matchar.2016.04.023 (2016).

    Article  Google Scholar 

  57. Y. Birol, Alloy Compd. https://doi.org/10.1016/j.jallcom.2009.06.167 (2009).

    Article  Google Scholar 

  58. C. He Li, J. Fu, J. Xu, G. Xu, and Z. Wang, Mater. Charact. https://doi.org/10.1016/j.matchar.2020.110145 (2020).

    Article  Google Scholar 

  59. S. Li, T. Jiang, J. Wang, L. Chen, B. Wei, Y. Li, G. Xu, and Z. Wang, Mater. Sci. Eng. A 757, 14 (2019).

    Article  Google Scholar 

  60. B.S. Berg, V. Hansen, P.T. Zagierski, M.L. Nedreberg, A. Olsen, and J. Gjonnes, J. Mater. Process. Technol. https://doi.org/10.1016/0924-0136(95)01962-E (1995).

    Article  Google Scholar 

  61. B. Forbord, B. Andersson, F. Ingvaldsen, O. Austevik, J.A. Horst, and I. Skauvik, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2005.08.224 (2006).

    Article  Google Scholar 

  62. D.J. Monaghan, M.B. Henderson, J.D. Hunt, and D.V. Edmonds, Mater. Sci. Eng. A. https://doi.org/10.1016/0921-5093(93)90224-3 (1993).

    Article  Google Scholar 

  63. T. Haga, K. Takahashi, H. Inui, H. Sakaguchi, H. Watari, and S. Kumai, J. Mater. Process. Technol. https://doi.org/10.1016/j.jmatprotec.2006.11.088 (2007).

    Article  Google Scholar 

  64. T. Haga, T. Nishiyama, and S. Suzuki, J. Mater. Process. Technol. https://doi.org/10.1016/S0924-0136(02)00251-0 (2003).

    Article  Google Scholar 

  65. T. Haga, M. Ikawa, H. Wtari, and S. Kumai, J. Mater. Process. Technol. https://doi.org/10.1016/j.jmatprotec.2005.10.007 (2006).

    Article  Google Scholar 

  66. T. Haga, H. Inui, H. Watari, and S. Kumai, J. Mater. Process. Technol. https://doi.org/10.1016/j.jmatprotec.2007.03.012 (2007).

    Article  Google Scholar 

  67. P.N. Anyalebechi, Technical issues impeding the proliferation of continuous casting processes in the aluminum industry. Proc. TMS Fall Extr. Process. Conf. 2004(December), 191–215 (2004).

    Google Scholar 

  68. M. Yun, S.A. Lockyer, and J.D. Hunt, Int. J. Cast Met. Res. https://doi.org/10.1080/13640461.2001.11819407 (2001).

    Article  Google Scholar 

  69. Y. Kashitani, S. Nishida, and J. Ichikawa, Nanotechnol. Appl. 1(2), 1 (2018).

    Google Scholar 

  70. S.A. Lockyer, M. Yun, J.D. Hunt, and D.V. Edmonds, Mater. Charact. https://doi.org/10.1016/S1044-5803(97)80019-8 (1996).

    Article  Google Scholar 

  71. B.Q. Li, J. Miner Met. Mater. Soc. (TMS) 47(5), 29 (1995).

    Article  Google Scholar 

  72. C. Gras, M. Meredith, K. Gatenby, and J.D. Hunt, Mater. Sci. Forum. https://doi.org/10.4028/www.scientific.net/msf.396-402.89 (2002).

    Article  Google Scholar 

  73. M.S. Kim, S.H. Kim, and H.W. Kim, Scr. Mater. 152, 69 (2018).

    Article  Google Scholar 

  74. J.T. Li, et al., Int. J. Adv. Manuf. Technol. https://doi.org/10.1007/s00170-0157963-8 (2016).

    Article  Google Scholar 

  75. X. Su, A. Zhang, Y. Xiao, M. Li, and G. Xu, Rare Met. Mater. Eng. https://doi.org/10.1016/s1875-5372(15)60037-6 (2014).

    Article  Google Scholar 

  76. M. Sun, C. Zheng, F. Du, and Z. Zhu, Mech. Based Des. Struct. Mach. https://doi.org/10.1080/15397734.2019.1707687 (2020).

    Article  Google Scholar 

  77. W.E.N. Hongquan, Dispon. En 2, 1–5 (2004).

    Google Scholar 

  78. X. Su, G.M. Xu, and D.H. Jiang, Rare Met. https://doi.org/10.1007/s12598-014-0417-x (2015).

    Article  Google Scholar 

  79. Y. Jia, X. Chen, Q. Le, H. Wang, and W. Jia, Int. J. Adv. Manuf. Technol. https://doi.org/10.1007/s00170-019-03501-y (2019).

    Article  Google Scholar 

  80. Q. Chen, and H. Shen, Int. J. Heat Mass Transf. 120, 997 (2018).

    Article  Google Scholar 

  81. X. Su, G.M. Xu, and J.W. Jiang, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-014-0960-3 (2014).

    Article  Google Scholar 

  82. B.Q. Li, J. Mater. 47(8), 13–17 (1995).

    Google Scholar 

  83. X. Su, S.J. Wang, X. Ouyang, P. Song, G.M. Xu, and D.H. Jiang, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2014.03.090 (2014).

    Article  Google Scholar 

  84. D. Mao, H. Yan, X. Zhao, Z. Zhu, and J. Zhong, J. Mater. Process. Technol. https://doi.org/10.1016/S0924-0136(03)00125-0 (2003).

    Article  Google Scholar 

  85. G. Chen, T. You, and G. Xu, Appl. Phys. A Mater. Sci. Process. https://doi.org/10.1007/s00339-017-1449-5 (2018).

    Article  Google Scholar 

  86. G. Wang, M. Dargusch, M. Easton, and D.S. John, Fundamentals of aluminium metallurgy. In: RN. Lumley (ed.), Woodhead, p. 279 (2018).

  87. J. Li, G. Xu, and J. Cui, Adv. Mater. Res. https://doi.org/10.4028/www.scientific.net/AMR.146-147.911 (2011).

    Article  Google Scholar 

  88. C. Shi, D. Heng-Mao, and Z. Li-Fu, J. Cent. South Univ. https://doi.org/10.1007/s11771-015-2538-2 (2015).

    Article  Google Scholar 

  89. J. Huang, J. Li, C. Li, C. Huang, and B. Friedrich, Elimination of edge cracks and centerline segregation of twin-roll cast aluminum strip by ultrasonic melt treatment. J. Mater. Res. Technol. 9(3), 5034–5044 https://doi.org/10.1016/j.jmrt.2020.03.021 (2020).

    Article  Google Scholar 

  90. G.I. Eskin, Material Sci. Technol. https://doi.org/10.1080/02670836.2016.1162415 (2016).

    Article  Google Scholar 

  91. G.I. Eskin, and D.G. Eskin, Ultrasonic melt treatment of light alloy melts, 2nd edn. (CRC Press, Boca Raton, FL, 2014).

    Book  Google Scholar 

  92. N.S. Barekar, S. Das, Z. Fan, R. Cindery, and N. Champion, Microstructural evaluation during melt conditioned twin roll casting (MC-TRC) of Al-Mg binary alloys. Mater. Sci. Forum 790–791, 285–290 https://doi.org/10.4028/www.scientific.net/MSF.790-791.285 (2014).

    Article  Google Scholar 

  93. G. Chen, J.T. Li, and G.M. Xu, Acta Metall. Sin. Engl. Lett. https://doi.org/10.1007/s40195-017-0633-0 (2018).

    Article  Google Scholar 

  94. K. Sun, Y. Zhang, Y. Lv, G. Xu, X. Su, G. Chi, and C. Wang, Res. Rev. J. Mater. Sci. 4, 8 (2016).

    Google Scholar 

  95. M. McBrien, J.M. Allwood, and N.S. Barekar, J. Mater. Process. Technol. https://doi.org/10.1016/j.jmatprotec.2015.03.034 (2015).

    Article  Google Scholar 

  96. M. Daheng, W. Weijuan, Z. Jue, and M. Yan, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2004.03.070 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, A., Biswas, P., Mallik, A. et al. Electromagnetic Twin-Roll Casting of Aluminium Alloy Sheets: An Overview. JOM 74, 4876–4897 (2022). https://doi.org/10.1007/s11837-022-05490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05490-y

Navigation