Skip to main content
Log in

Physical Modeling of Metallurgical Slag Foaming Induced by Chemical Reaction

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Control of slag foaming induced by chemical reactions is vital for efficient and safe production of metallurgical processes. Through physical modeling, this paper investigates the effects of amount of gas generated, viscosity, and surface tension of the slag on the slag foaming induced by chemical reaction. The research outcomes indicate that the maximum volume fraction of gas increases and spherical-cell foam gradually evolves into polyhedral-cell foam with increasing generation of gas. The evolution of the foam structure is prevented by an increase in the viscosity of the slag. As the viscosity of the slag increases, the maximum volume fraction of gas increases first and consequently marginally decreases. With decreasing the surface tension, the maximum volume fraction of gas increases and the decaying rate of foam decreases. The increase in the maximum volume fraction of gas arising from decreasing surface tension is reduced with increasing generation of gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Nexhip, S.Y. Sun, and S. Jahanshahi, Int. Mater. Rev. 49, 286. (2004).

    Google Scholar 

  2. C. Cicutti, M. Martín, R. Donayo, and A. Gomez, Rev. Metall. 107, 309. (2010).

    Google Scholar 

  3. A.A. Kozhukhov and V.I. Kozhukhova, Metallurgist 62, 326. (2018).

    Google Scholar 

  4. T.X. Zhu, K.S. Coley, and G.A. Irons, Metall. Mater. Trans. B 43, 751. (2012).

    Google Scholar 

  5. G. Heinrich-Wilhelm, K. Wu, S. Nys, and H. Rosenbaum, Steel Res. 63, 521. (1992).

    Google Scholar 

  6. K. Ito and R.J. Fruehan, Metall. Trans. B 20, 509. (1989).

    Google Scholar 

  7. S.M. Jung and R.J. Fruehan, ISIJ Int. 40, 348. (2000).

    Google Scholar 

  8. R.F. Wang, B. Zhang, C.J. Liu, and M.F. Jiang, Exp. Therm. Fluid Sci. 113, 110041. (2000).

    Google Scholar 

  9. B. Zhang, R.F. Wang, C. Hu, C.J. Liu, and M.F. Jiang, ISIJ Int. 61, 1348. (2021).

    Google Scholar 

  10. R.F. Wang, B. Zhang, C. Hu, C.J. Liu, and M.F. Jiang, Metall. Mater. Trans. B 52, 1805. (2021).

    Google Scholar 

  11. L.S. Wu, G.J. Albertsson, and S.C. Du, Ironmak. Steelmak. 37, 612. (2010).

    Google Scholar 

  12. R.F. Wang, B. Zhang, C.J. Liu, and M.F. Jiang, Metall. Mater. Trans. B 51, 2020. (1941).

    Google Scholar 

  13. R.F. Wang, B. Zhang, C. Hu, C.J. Liu, and M.F. Jiang, Steel Res. Int. 93, 2100318. (2022).

    Google Scholar 

  14. R.F. Wang, B. Zhang, C. Hu, C.J. Liu, and M.F. Jiang, JOM 74, 151. (2022).

    Google Scholar 

  15. Y.L. Zhen, G.H. Zhang, and K.C. Chou, Metall. Mater. Trans. B 46, 155. (2015).

    Google Scholar 

  16. G. Qiu, C. Shan, X. Zhang, and X. Lv, Ironmak. Steelmak. 44, 246. (2017).

    Google Scholar 

  17. J.Y. Xiang, J. Wang, Q.J. Li, C. Shan, G.B. Qiu, W.Z. Yu, and X.W. Lv, Can. Metall. Q. 59, 151. (2020).

    Google Scholar 

  18. G.B. Qiu and X.W. Lv, J. Mater. Res. Technol. 11, 1184. (2021).

    Google Scholar 

  19. J. Martinsson and S.C. Du, ISIJ Int. 59, 46. (2019).

    Google Scholar 

  20. G.Q. Liu, K. Liu, and P. Han, Ironmak. Steelmak. 48, 437. (2021).

    Google Scholar 

  21. B. Zhang, K. Chen, R.F. Wang, C.J. Liu, and M.F. Jiang, Meals 9, 409. (2019).

    Google Scholar 

  22. G.Q. Liu, K. Liu, and P. Han, Ironmak. Steelmak. 48, 1. (2021).

    Google Scholar 

  23. T.M. Kipepe and X.W. Pan, J. Energy S. Afr. 26, 64. (2015).

    Google Scholar 

  24. M. Alam, G. Irons, G. Brooks, A. Fontana, and J. Naser, ISIJ Int. 51, 1439. (2011).

    Google Scholar 

  25. J.H. Heo and J.H. Park, Metall. Mater. Trans. B 52, 3613. (2021).

    Google Scholar 

  26. J. Lee, J. Kim, H. Hwang, K. Son, W. Jeon, Y. Kim, H. Um, and H. Yang, Metall. Res. Technol 117, 114. (2021).

    Google Scholar 

  27. H. Matsuura, C.P. Manning, R.A.F.O. Fortes, and R.J. Fruehan, ISIJ Int. 48, 1197. (2008).

    Google Scholar 

  28. H. Matsuura and R.J. Fruehan, ISIJ Int. 49, 1530. (2009).

    Google Scholar 

  29. A. Chychko, L.D. Teng, and S. Seetharaman, Metall. Mater. Trans. B 43, 1078. (2012).

    Google Scholar 

  30. A. Chychko, L.D. Teng, and S. Seetharaman, Metall. Mater. Trans. B 42, 20. (2011).

    Google Scholar 

  31. R.D. Morales, H.A. Rodríguez-Hernández, A. Vargas-Zamora, and A.N. Conejo, Ironmak. Steelmak. 29, 445. (2002).

    Google Scholar 

  32. A.A. Kozhukhov, Russ. Metall. 2015, 454. (2015). https://doi.org/10.1134/S0036029515060099

    Article  Google Scholar 

  33. R. Corbari, H. Matsuura, S. Halder, M. Walker, and R.J. Fruehan, Metall. Mater. Trans. B 40, 940. (2009).

    Google Scholar 

  34. Y. Ogawa, H. Katayama, H. Hirate, N. Tokumitsu, and M. Yamauchi, ISIJ Int. 32, 87. (1992).

    Google Scholar 

  35. V. Sahajwalla, M. Rahman, R. Khanna, N. Saha-Chaudhury, P. O’Kane, C. Skidmore, and D. Knights, Steel Res. Int. 80, 535. (2009).

    Google Scholar 

  36. Y. Zhang and R.J. Fruehan, Metall. Mater. Trans. B 26, 813. (1995).

    Google Scholar 

  37. S.J. Chu, Q. Niu, K. Wu, and Y. Wang, ISIJ Int. 40, 549. (2000).

    Google Scholar 

  38. Y. Min, D.Y. Wang, C.J. Liu, and M.F. Jiang, J. Northeast Univ. 29, 350. (2008).

    Google Scholar 

  39. Y. Min, D.Y. Wang, C.J. Liu, and M.F. Jiang, J. Northeast Univ. 7, 10. (2008).

    Google Scholar 

  40. V. Canaguier and M. Tangstad, Processes 9, 18. (2021). https://doi.org/10.3390/pr9112020

    Article  Google Scholar 

  41. S. Hatano, S. Hayashi, N. Saito, and K. Nakashima, ISIJ Int. 61, 2904. (2021).

    Google Scholar 

  42. Y.E. Chang, C.M. Lin, J.M. Shen, W.T. Chang, and W.T. Wu, Metals 11, 249. (2021).

    Google Scholar 

  43. J. Martinsson, A. Vickerfalt, and S.C. Du, ISIJ Int. 62, 104. (2022).

    Google Scholar 

  44. M.Y. Zhu, T. Jones, and S.C. Du, Scand. J. Metall. 30, 51. (2001).

    Google Scholar 

  45. S.S. Ghag, P.C. Hayes, and H.G. Lee, ISIJ Int. 38, 1201. (1998).

    Google Scholar 

  46. J. Martinsson, B. Glaser, and S.C. Du, Ironmak. Steelmak. 46, 777. (2019).

    Google Scholar 

  47. M. Brämming, Avoiding Slopping in Top-Blown BS Vessels. Luleå University of Technology, Licentiate Thesis (2010).

  48. N. Dogan, G.A. Brooks, and M.A. Rhamdhani, ISIJ Int. 51, 1102. (2011).

    Google Scholar 

  49. K. Koch, J. Falkus, and R. Bruckhaus, Steel Res. Int. 64, 15. (1993).

    Google Scholar 

  50. D. Dering, C. Swartz, and N. Dogan, Processes 8, 483. (2020).

    Google Scholar 

  51. C. Cicutti, M. Valdez, D.T.R. Perez, and J. Petroni, Lat. Am. Appl. Res. 32, 237. (2002).

    Google Scholar 

  52. M. Brämming, An Operational View on Foaming Slopping Control in Top-Blown BOS Vessels. Luleå University of Technology, PhD dissertation (2015).

  53. C. Hu, R.F. Wang, B. Zhang, M.W. Li, C.J. Liu, and M.F. Jiang, Steel Iron Vanadium Titanium 42, 130. (2021).

    Google Scholar 

  54. S. Hara and K. Ogino, ISIJ Int. 32, 81. (1992).

    Google Scholar 

  55. M. Martín, F.J. Montes, and M.A. Galán, Chem. Eng. Sci. 61, 5196. (2006).

    Google Scholar 

Download references

Acknowledgements

Financial support for this project was provided by the National Natural Science Foundation of China (Grant No. 52174383), National Key R&D Program of China (Grant No. 2021YFC2901200), Open Project of State Key Laboratory of Baiyunobo Rare Earth Resource Research and Comprehensive Utilization (Grant No. GZ-2022-DK-003), and the 111 Project (Grant No. B16009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifang Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Wang, R., Liu, C. et al. Physical Modeling of Metallurgical Slag Foaming Induced by Chemical Reaction. JOM 74, 4930–4937 (2022). https://doi.org/10.1007/s11837-022-05483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05483-x

Navigation