Skip to main content
Log in

Microstructure and Corrosion Behaviors of High-Strength and High-Elasticity Cu-20Ni-20Mn-xGa Alloys

  • Recent Advances in Multicomponent Alloys and Ceramics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Cu-20Ni-20Mn-xGa (x = 1, 5 wt.%) alloys with high strength and elasticity were prepared and tested for corrosion properties in 3.5 wt.% NaCl solution. The hardness, tensile strength, elongation, and annual corrosion rate of the Cu-20Ni-20Mn-1 Ga alloy reached 1368 MPa, 442 HV, 8.63%, and 0.0262 mm/year, respectively, while those of Cu-20Ni-20Mn-5 Ga alloy were 1278 MPa, 428 HV, 2.5%, and 0.0119 mm/year, respectively. The excellent mechanical properties were attributed to the nanoscale NiMn phase which can strengthen the copper matrix. In addition to grain refinement, the addition of Ga also reduced the cathodic current. Also, the corrosion products of the two alloys in 3.5 wt.% NaCl solution were mainly oxides and chlorides. The Cu-20Ni-20Mn-5 Ga showed better corrosion resistance with more gallium-rich oxides in the corrosion product film to resist corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.H. Lo, W.M. Gibbon, and R.S. Hollingshead, JMatS 22, 3293 (1987).

    Google Scholar 

  2. L. Chen, D. Fu, and M. Chen, JMatS 55, 13398 (2020).

    Google Scholar 

  3. S. Nourbakhsh, and J. Nutting, JMatS 14, 2642 (1979).

    Google Scholar 

  4. J.L. Liu, X.M. Huang, G.H. Li, G.M. Cai, H.S. Liu, and Z.P. Jin, JMatS 53, 7809 (2018).

    Google Scholar 

  5. J. Lemus-Ruiz, L. Ceja-Cárdenas, J.A. Verduzco, and O. Flores, JMatS 43, 6296 (2008).

    Google Scholar 

  6. K.L. Lv, Z.Y. Xie, H.S. Liu, G.M. Cai, and Z.P. Jin, JMatS 50, 7238 (2015).

    Google Scholar 

  7. S. Hu, L. Liu, Y. Cui, Y. Li, and F. Wang, Corros. Sci. 146, 202 (2019).

    Article  Google Scholar 

  8. R. Johnsen, T. Lange, G. Stenerud, and J.S. Olsen, Corros. Sci. 142, 45–55 (2018).

    Article  Google Scholar 

  9. X. Wu, J. Zha, and M.A.G. Koffas, Curr. Opin. Food Sci. 32, 9 (2020).

    Article  Google Scholar 

  10. G. Chunlei, L. Xuefeng, H. Haiyou, and X. Jianxin, Mat. Sci. Eng. A. 579, 202 (2013).

    Article  Google Scholar 

  11. H. Wei, Y.-H. Wei, L.-F. Hou, and N. Dang, Corros. Sci. 111, 382 (2016).

    Article  Google Scholar 

  12. Y. Wang, Y. Niu, G. Wang, Y. Sun, and C. Liu, J. Alloys Compd. 778, 691 (2019).

    Article  Google Scholar 

  13. X. Guoliang, W. Qiangsong, M. Xujun, X. Baiqing, and P. Lijun, Mat. Sci. Eng. A. 558, 326 (2012).

    Article  Google Scholar 

  14. X. Lu, Y.-W. Liu, H.-T. Zhao, C. Pan, Z.-Y. Wang, and T. Nonferr, Metal. Soc. 31, 703 (2021).

    Google Scholar 

  15. Y. Fu, J. Li, H. Luo, C. Du, and X. Li, J. Mater. Sci. Technol. 80, 217 (2021).

    Article  Google Scholar 

  16. J. Liu, S. Yang, W. Xia, X. Jiang, and C. Gui, J. Alloys Compd. 654, 63 (2016).

    Article  Google Scholar 

  17. L. Shao, G. Xie, X. Liu, Y. Wu, J. Yu, and Y. Wang, Corros. Sci. 163, 108253 (2020).

    Article  Google Scholar 

  18. W.-B. Xie, Q.-S. Wang, X.-J. Mi, G.-L. Xie, D.-M. Liu, X.-C. Gao, Y. Li, and T. Nonferr, Metal. Soc. 25, 3247 (2015).

    Google Scholar 

  19. J. Ren, E. Guo, X. Wang, H. Kang, Z. Chen, and T. Wang, Materials (Basel) 12, 3686 (2019).

    Article  Google Scholar 

  20. M.F. Wang, D.H. Xiao, B.R. Sun, and W.S. Liu, J. Alloys Compd. 776, 172 (2019).

    Article  Google Scholar 

  21. C. Wang, Y. Gong, B.V. Cunning, S. Lee, Q. Le, S.R. Joshi, O. Buyukcakir, H. Zhang, W.K. Seong, M. Huang, M. Wang, J. Lee, G.H. Kim, and R.S. Ruoff, Sci Adv 7, 3767 (2021).

    Article  Google Scholar 

  22. A. NACE, ASTM International (ASTMG31–12a (2012)).

  23. Rashmi and P.K.C. Pillai, JMatS, 20, 2275–2279 (1985).

  24. C.-H. Chang, T.-C. Huang, C.-W. Peng, T.-C. Yeh, H.-I. Lu, W.-I. Hung, C.-J. Weng, T.-I. Yang, and J.-M. Yeh, Carbon 50, 5044 (2012).

    Article  Google Scholar 

  25. F. Muktepavela, G. Bakradze, and V. Sursaeva, JMatS 43, 3848 (2008).

    Google Scholar 

  26. H. Jin, Z. Nie, L. Wang, D. Cong, C. Tan, H. Cai, and Y. Wang, Intermetallics 131, 107128 (2021).

    Article  Google Scholar 

  27. M.-X. Wang, H. Zhu, G.-J. Yang, K. Liu, J.-F. Li, and L.-T. Kong, Mater. Design. 198, 109359 (2021).

    Article  Google Scholar 

  28. K. Nagato, K. Shintani, T. Shimura, N. Shikazono, and M. Nakao, J. Electrochem. Soc. 166, F144–F148 (2019).

    Article  Google Scholar 

  29. T. Zhao, S. Wang, Z. Liu, C. Du, and X. Li, Corros. Sci. 179, 109176 (2021).

    Article  Google Scholar 

  30. Z. Xiao, Z. Li, A. Zhu, Y. Zhao, J. Chen, and Y. Zhu, Corros. Sci. 76, 42 (2013).

    Article  Google Scholar 

  31. H. Nady, N.H. Helal, M.M. El-Rabiee, and W.A. Badawy, MCP 134, 945 (2012).

    Google Scholar 

  32. L. Núñez, E. Reguera, F. Corvo, E. González, and C. Vazquez, Corros. Sci. 47, 461 (2005).

    Article  Google Scholar 

  33. A. Drach, I. Tsukrov, J. DeCew, J. Aufrecht, A. Grohbauer, and U. Hofmann, Corros. Sci. 76, 453 (2013).

    Article  Google Scholar 

  34. ŽZ. Tasić, M.B.P. Mihajlović, M.B. Radovanović, A.T. Simonović, and M.M. Antonijević, JMoSt 1159, 46 (2018).

    Google Scholar 

  35. S. Chen, and D. Zhang, Corros. Sci. 136, 275 (2018).

    Article  Google Scholar 

  36. X. Zhang, S.O. Pehkonen, N. Kocherginsky, and G.A. Ellis, Corros. Sci. 44(11), 2507 (2002).

    Article  Google Scholar 

  37. M. Wang, M. Song, G.S. Was, and J.L. Nelson, Corros. Sci. 160, 108168 (2019).

    Article  Google Scholar 

  38. A.A. El-Moneim, A. Gebert, M. Uhlemann, O. Gutfleisch, and L. Schultz, Corros. Sci. 44, 1857 (2002).

    Article  Google Scholar 

  39. M. Srinivas, S.K. Adapaka, and L. Neelakantan, J. Alloys Compd. 683, 647 (2016).

    Article  Google Scholar 

  40. X. Wang, Z. Chen, E. Guo, X. Liu, H. Kang, and T. Wang, J. Alloys Compd. 863, 158762 (2021).

    Article  Google Scholar 

  41. L. Romero-Resendiz, J.M. Cabrera, S. Elizalde, V. Amigó-Borrás, I.A. Figueroa, and G. Gonzalez, J. Market. Res. 18, 1281 (2022).

    Google Scholar 

  42. W.B. Xie, Q.S. Wang, G.L. Xie, X.J. Mi, D.M. Liu, X.C. Gao, and Y. Li, MSF 850, 773 (2016).

    Article  Google Scholar 

  43. N. Saikrishna, G.P.K. Reddy, B. Munirathinam, and B.R. Sunil, J. Magnes. Alloys 4(1), 68 (2016).

    Article  Google Scholar 

  44. G.R. Argade, K. Kandasamy, S.K. Panigrahi, and R.S. Mishra, Corros. Sci. 58, 321 (2012).

    Article  Google Scholar 

  45. A. Balyanov, Scripta Mater. 51, 225 (2004).

    Article  Google Scholar 

  46. H. Miyamoto, K. Harada, T. Mimaki, A. Vinogradov, and S. Hashimoto, Corros. Sci. 50, 1215 (2008).

    Article  Google Scholar 

  47. M.T. Lee, H. Liu, and D. Brandell, Batteries Supercaps 3, 1370 (2020).

    Article  Google Scholar 

  48. Y. Zhang, Z. Xiao, Y. Zhao, Z. Li, Y. Xing, and K. Zhou, MCP 199, 54 (2017).

    Google Scholar 

  49. M.R. Nellist, F.A. Laskowski, F. Lin, T.J. Mills, and S.W. Boettcher, Acc. Chem. Res. 49, 733 (2016).

    Article  Google Scholar 

  50. J. Zhang, B. Jiang, Q. Yang, D. Huang, A. Tang, F. Pan, and Q. Han, J. Alloys Compd. 849, 156619 (2020).

    Article  Google Scholar 

  51. K.D. Ralston, and N. Birbilis, Corrosion 66(7), 075005 (2010).

    Article  Google Scholar 

  52. J. Kubasek, D. Vojtech, J. Lipov, and T. Ruml, Mater Sci Eng C Mater Biol Appl 33, 2421 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (No. 2021YFB3501000), National Natural Science Foundation of China (No. 51701241), National Defense Pre-Research Foundation of China (No. 61402100105), the China Postdoctoral Science Foundation (No. 2018T110838) and Natural Science Foundation of Hunan Province (No. 2018JJ3647).

Funding

Funding was provided by National Key R&D Program of China, (Grant No. 2021YFB3501000), Shen Gong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Gong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2274 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Jiang, D., Xu, Z. et al. Microstructure and Corrosion Behaviors of High-Strength and High-Elasticity Cu-20Ni-20Mn-xGa Alloys. JOM 74, 4258–4270 (2022). https://doi.org/10.1007/s11837-022-05445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05445-3

Navigation