Skip to main content
Log in

A Novel Method for the Recovery of Li from Spent Lithium-Ion Batteries Using Reduction Roasting–Countercurrent Leaching

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A novel method for the recovery of Li from cathode material of waste ternary lithium-ion batteries is proposed, wherein water-based leaching of the reduction roasting product was conducted. First, the effects of leaching temperature, leaching time, liquid–solid ratio, and CO2 aeration rate on the recovery of Li were investigated, demonstrating that the leaching rate of Li can reach 79.95% under optimal conditions, i.e., a CO2 aeration rate of 200 mL/min, leaching time of 1.5 h, and liquid–solid ratio of 15:1, at 15°C. The leaching time and CO2 aeration rate had little impact, while the liquid–solid ratio and temperature were found to significantly affect the leaching rate of Li. Then, counter-current leaching experiments were carried out, and the total leaching rate of Li exceeded 98% after four stages with a liquid-to-solid ratio of 15:1. Battery-grade purity of the lithium carbonate product was obtained by evaporative crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N.A. Owen, O.R. Inderwildi, and D.A. King, Energy Policy 38, 4743 (2010).

    Article  Google Scholar 

  2. B. Dunn, H. Kamath, and J.M. Tarascon, Science 334, 6058 (2011).

    Article  Google Scholar 

  3. D. Deng, Energy. Sci. Eng. 3, 385 (2015).

    Article  Google Scholar 

  4. A. Christian, and J. Gerfried, Energies 13, 6345 (2020).

    Article  Google Scholar 

  5. B. Huang, Z. Pan, and X. Su, J. Power. Sources. 399, 274 (2018).

    Article  Google Scholar 

  6. W.G. Lv, Z.H. Wang, H.B. Cao, Y. Sun, Y. Zhang, and Z. Sun, ACS Sustainable Chem. Eng. 6, 1504 (2018).

    Article  Google Scholar 

  7. Y.F. Song, and Z.W. Zhao, Sep. Purif. Technol. 206, 335 (2018).

    Article  Google Scholar 

  8. Y.Q. Wang, N. An, L. Wen, L. Wang, X.T. Jiang, F. Hou, Y.X. Yin, and J. Liang, J ENERGY CHEM. 55, 391 (2018).

    Article  Google Scholar 

  9. M. Contestabile, S. Panero, and B. Scrosati, Sources 92, 65 (2001).

    Article  Google Scholar 

  10. S. Natarajan, and V. Aravindan, Adv. Energy. Mater. 8, 1802303 (2018).

    Article  Google Scholar 

  11. S.M. Shin, N.H. Kim, J.S. Sohn, D.H. Yang, and Y.H. Kim, Hydrometallurgy 79, 172 (2005).

    Article  Google Scholar 

  12. C. Hanisch, W. Haselrieder, and A. Kwade, Glocalized Sol. Sustain. Manuf. https://doi.org/10.1007/978-3-642-19692-8_15 (2011).

    Article  Google Scholar 

  13. D. Song, X. Wang, E. Zhou, P. Guo, and L. Zhang, J. Power. Sources. 232, 348 (2013).

    Article  Google Scholar 

  14. T.C. Nirmale, B.B. Kale, and A.J. Varma, Int J Biol Macromol. 103, 1032 (2017).

    Article  Google Scholar 

  15. J.H. Li, X.H. Li, Q.Y. Hu, Z.X. Wang, and J.C. Zhang, Hydrometallurgy 99, 7 (2010).

    Article  Google Scholar 

  16. G.G. Wang, H.N. Zhang, T. Wu, B.R. Liu, Q. Huang, and Y.F. Su, Prog. Chem. 32, 2064 (2020).

    Google Scholar 

  17. X.P. Fan, C.H. Song, X.F. Lu, Y. Shi, S.L. Yang, F.H. Zheng, Y.G. Huang, K. Liu, H.Q. Wang, and Q.Y. Li, J. Alloy. Compd. 863, 15 (2021).

    Article  Google Scholar 

  18. L. Yang, G.X. Xi, and Y.B. Xi, Int. 41, 11498 (2015).

    Google Scholar 

  19. P.Y. Huo, L.Q. Zhang, and E.L. Zhou, J. Power. Sources. 232, 348 (2013).

    Article  Google Scholar 

  20. R. Sattar, S. Ilyas, H.N. Bhatti, and A. Ghaffar, Sep. Purif. Technol. 209, 725 (2019).

    Article  Google Scholar 

  21. S.P. Barik, G. Prabaharan, and L. Kumar, J. Clean. Prod. 147, 37 (2017).

    Article  Google Scholar 

  22. W.F. Gao, J.L. Song, and H.B. Cao, J. Clean. Prod. 178, 833 (2018).

    Article  Google Scholar 

  23. C.L. Zhang, B.X. Wang, and Z.Y. Li, Nonferrous Metals Eng. 10, 73 (2020).

    Google Scholar 

  24. M.C. Sun, H. Ye, and W.J. Chen, Nonferrous Metals (Extractive Metallurgy). 3, 68 (2019).

    Google Scholar 

  25. J. Nan, D. Han, and X. Zuo, J. Power. Sources. 152, 278 (2005).

    Article  Google Scholar 

  26. G.S. Zeng, X.R. Deng, S.L. Luo, X.B. Luo, and J.P. Zou, J. Hazard. Mater. 199, 164 (2012).

    Article  Google Scholar 

  27. S. Virolainen, M.F. Fini, A. Laitinen, and T. Sainio, Sep. Purif. Technol. 179, 274 (2017).

    Article  Google Scholar 

  28. F. Vasilyev, S. Virolainen, and T. Sainio, Sep. Purif. Technol. 210, 530 (2019).

    Article  Google Scholar 

  29. Y. Yang, S.L. Song, F. Jiang, J.H. Zhou, and W. Sun, J. Cleaner Prod. 186, 123 (2018).

    Article  Google Scholar 

  30. L. Li, Y.F. Bian, X.X. Zhang, Y.B. Guan, E. Fan, F. Wu, and R.J. Chen, Waste Manage. 71, 362 (2018).

    Article  Google Scholar 

  31. A.A. Thomas, E. Giuseppe, H. Robert, A. Pietro, and P. Francesca, J. Energy Chem. 35, 220 (2019).

    Article  Google Scholar 

  32. L. Li, Y.F. Bian, X.X. Zhang, Y. Yao, Q. Xue, E. Fan, F. Wu, and R.J. Chen, Waste Manage. 85, 437 (2019).

    Article  Google Scholar 

  33. Q. Meng, Y. Zhang, P. Dong, and F. Liang, J. Ind. Eng. Chem. 61, 133 (2018).

    Article  Google Scholar 

  34. G.X. Ren, B. Pan, M.Q. Xie, J. Chen, F.G. Wang, and S.W. Xiao, Min. Metall. Eng. 35, 75 (2015).

    Google Scholar 

  35. X.H. Zhang, Y.B. Xie, H.B. Cao, F.H. Nawaz, and Y. Zhang, Waste Manage. 34, 1715 (2014).

    Article  Google Scholar 

  36. C. Peng, F.P. Liu, Z.L. Wang, B.P. Wilson, and M. Lundstrom, J. Power. Sources. 415, 179 (2019).

    Article  Google Scholar 

  37. Y. Yu, D. Wang, H. Chen, X. Zhang, and L. Yang, Chem. Res. Chin. Univ. 5, 908 (2020).

    Article  Google Scholar 

  38. K. Yan, Z.Y. Xiong, Z.L. Liu, Z.F. Xu, R.X. Wang, and H.P. Nie, J. Central South Univ. Sci. Technol. 51, 3367 (2020).

    Google Scholar 

  39. J.A. Dean, Lange’s Handbook of Chemistry (Science Press, Beijing, 1991).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2019YFC1908404, No. 2019YFC1908405), the Natural Science Foundation of China (No. 51904124, No. 52064018, No. 51974140, No. 52004111), Key Projects of Jiangxi Key R&D Plan (No. 20192ACB70017, No. 20212ACB204015), the Distinguished Professor Program of Jinggang Scholars, China Institutions of Higher learning Jiangxi Province, the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology (JXUSTQJYX2020012), Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects (20212BCJL23052, 20212BCJ23006, 20212BCJ23007), the Natural Science Foundation of Jiangxi Province(20202BAB214015), China and Post-subsidy project of young talents plan of Ganzhou Science and Technology Bureau (No. 2020-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongtang Zhang.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1034 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, K., Chen, Q., Xiong, Z. et al. A Novel Method for the Recovery of Li from Spent Lithium-Ion Batteries Using Reduction Roasting–Countercurrent Leaching. JOM 74, 3821–3832 (2022). https://doi.org/10.1007/s11837-022-05432-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05432-8

Navigation