Skip to main content
Log in

Experimental Research on Microsecond-Laser-Induced Superhydrophobic Surface and Its Ice Suppression Properties

  • Advances in Surface Engineering
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Inspired by natural biological surfaces, it is of great engineering significance to construct micro-/nano-structured surfaces by artificial methods to achieve changes in surface wettability. In this paper, a microsecond pulsed laser is used to prepare a micro-/nano-structure with superhydrophobic properties on the surface of a titanium alloy by controlling the scanning speed. After organic adsorption on the surface, the micro-/nano-structure combines a large number of C–C and C–H functional groups, and the static water contact angle can reach 159°, with low water adhesion. Better hydrophobicity promotes the combination of tiny droplets on the surface, forming sparse frosting sites, effectively reducing frosting mass and frost crystal coverage, reducing frost branch height, and the air layer trapped inside the micro-/nano-structure delays water droplets. In the course of the freezing time, the constructed surface has a better effect of inhibiting the growth of the frost layer and delaying the freezing of the droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Liu, X.L. Li, J.F. Jin, J.A. Liu, Y.Y. Yan, Z.W. Han, and L.Q. Ren, Appl. Surf. Sci. 400, 498–505. https://doi.org/10.1016/j.apsusc.2016.12.219 (2017).

    Article  Google Scholar 

  2. S.Y. Li, Y.Y. Fan, Y. Liu, S.C. Niu, Z.W. Han, and L.Q. Ren, J. Bionic Eng. 18, 473–500. https://doi.org/10.1007/s42235-021-0038-7 (2021).

    Article  Google Scholar 

  3. H.Y. Guan, Z.W. Han, H.N. Cao, S.C. Niu, Z.H. Qian, J.F. Ye, and L.Q. Ren, J. Bionic Eng. 12, 624–633. https://doi.org/10.1016/s1672-6529(14)60152-9 (2015).

    Article  Google Scholar 

  4. C.Y. Wang, M. Zhang, Y. Xu, S.L. Wang, F. Liu, M.L. Ma, D.L. Zang, and Z.X. Gao, Adv. Powder Technol. 25, 530–535. https://doi.org/10.1016/j.apt.2013.08.007 (2014).

    Article  Google Scholar 

  5. D.S. Zhang, F. Chen, Q. Yang, J.L. Yong, H. Bian, Y. Ou, J.H. Si, X.W. Meng, X. Hou, and A.C.S. Appl, Mater. Interfaces 4, 4905–4912. https://doi.org/10.1021/am3012388 (2012).

    Article  Google Scholar 

  6. J.L. Yong, Z.B. Zhan, S.C. Singh, F. Chen, and C.L. Guo, Langmuir 35, 9318–9322. https://doi.org/10.1021/acs.langmuir.9b01063 (2019).

    Article  Google Scholar 

  7. J.B. Boreyko, and C.P. Collier, ACS Nano 7, 1618–1627. https://doi.org/10.1021/nn3055048 (2013).

    Article  Google Scholar 

  8. J. Li, Y.J. Zhou, W.B. Wang, C.Y. Xu, and L.Q. Ren, Langmuir 36, 1075–1082. https://doi.org/10.1021/acs.langmuir.9b02273 (2020).

    Article  Google Scholar 

  9. Y.A. Liu, Y. Ding, L.J. Yang, R.L. Sun, T.G. Zhang, and X.J. Yang, J. Manuf. Process. 66, 341–363. https://doi.org/10.1016/j.jmapro.2021.03.061 (2021).

    Article  Google Scholar 

  10. Y. Lu, L.D. Yu, Z. Zhang, S.Z. Wu, G.Q. Li, P.C. Wu, Y.L. Hu, J.W. Li, J.R. Chu, and D. Wu, RSC Adv. 7, 11170–11179. https://doi.org/10.1039/c6ra28174e (2017).

    Article  Google Scholar 

  11. L. Makkonen, J. Phys. Condes. Matter 28, 4. https://doi.org/10.1088/0953-8984/28/13/135001 (2016).

    Article  Google Scholar 

  12. H.Y. Gu, C. Wang, S.J. Gong, Y. Mei, H. Li, and W.M. Ma, Surf. Coat. Technol. 292, 72–77. https://doi.org/10.1016/j.surfcoat.2016.03.014 (2016).

    Article  Google Scholar 

  13. H.Y. Luo, Y. Li, D.J. Huan, C.L. Zhu, J.X. Wang, and D. Zeng, Polym.-Plast. Tech. Mater. 60, 1106–1121. https://doi.org/10.1080/25740881.2021.1882490 (2021).

    Article  Google Scholar 

  14. J.T. Zhao, Z.G. Zhu, Y.C. Xu, X.Y. Song, Y.F. Wang, H. Peng, Y. Wang, J.R. Zuo, X.D. Shu, and A.N. Yin, Appl. Sci. Basel 10, 13. https://doi.org/10.3390/app10134657 (2020).

    Article  Google Scholar 

  15. Q.Y. Lin, Z.J. Fan, W.J. Wang, Z.X. Yan, Q.Z. Zheng, and X.S. Mei, Opt. Laser Technol. 129, 8. https://doi.org/10.1016/j.optlastec.2020.106270 (2020).

    Article  Google Scholar 

  16. V.K. Pustovalov, Photonics Nanostruct. 47, 5. https://doi.org/10.1016/j.photonics.2021.100974 (2021).

    Article  Google Scholar 

  17. J.Y. Long, M.L. Zhong, H.J. Zhang, and P.X. Fan, J. Colloid Interface Sci. 441, 1–9. https://doi.org/10.1016/j.jcis.2014.11.015 (2015).

    Article  Google Scholar 

  18. X.B. Jing, Z.H. Pu, S.X. Zheng, F.J. Wang, and H. Qi, Ceram. Int. 46, 24173–24182. https://doi.org/10.1016/j.ceramint.2020.06.197 (2020).

    Article  Google Scholar 

  19. Q.H. Wang, H.X. Wang, Z.X. Zhu, N. Xiang, Z.D. Wang, and G.F. Sun, Surf. Interfaces 24, 10. https://doi.org/10.1016/j.surfin.2021.101122 (2021).

    Article  Google Scholar 

  20. A. Raiyan, B. Mohammadian and H. Sojoudi, Coatings, 11, 16 (2021, Article). https://doi.org/10.3390/coatings11060617

  21. H. Jeong, S. Byun, D.R. Kim, and K.S. Lee, Int. J. Heat Mass Transf. 169, 10. https://doi.org/10.1016/j.ijheatmasstransfer.2021.120941 (2021).

    Article  Google Scholar 

  22. X.L. Zhan, Y.D. Yan, Q.H. Zhang, and F.Q. Chen, J. Mater. Chem. A 2, 9390–9399. https://doi.org/10.1039/c4ta00634h (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Fund Project: National Natural Science Foundation of China (No. 52076212), Postgraduate Research and Innovation Project of Tianjin (2021YJSS123), Postgraduate Research and Innovation Project of Civil Aviation University of China (2021YJS051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangfeng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Wang, C. & Yang, G. Experimental Research on Microsecond-Laser-Induced Superhydrophobic Surface and Its Ice Suppression Properties. JOM 74, 4551–4563 (2022). https://doi.org/10.1007/s11837-022-05427-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05427-5

Navigation