Skip to main content

Advertisement

Log in

Manufacture of Thin-Walled Axisymmetric Components by Friction Stir Welding and Spinning of Al-Li Alloy

  • Health, Safety and Environmental Sustainability in Aluminum Recovery
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A novel hybrid manufacturing technique combining friction stir welding and spinning provides a promising approach to forming large-diameter thin-walled axisymmetric components while minimizing process scrap. By integrating experimental and numerical methods, the feasibility of the hybrid manufacturing technique for producing thin-walled axisymmetric components with the 2195 Al-Li alloy was explored. The results indicate that the welding seam of the spun components restricts plastic deformation, which leads to flange swing. The movement of the welding seam occurs during spinning, and the movement direction is consistent with the rotation direction of the spun components. The microhardness of the components in the welding zone was found to increase by 21% on average after spinning. Moreover, the yield strength in the welding zone increased by over 60% and the tensile strength by over 12%. These results suggest that the hybrid manufacturing technique is a feasible way to produce large-diameter thin-walled axisymmetric components. Since the process scraps can be re-utilized using this method, it thus provides a potential route for sustainability in the recycling and remanufacturing of aluminum alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Medjahed, B.C. Li, L.G. Hou, R.Z. Wu, A. Zegaoui, M. Derradji, and H. Benyamina, JOM 71, 4. (2019).

    Article  Google Scholar 

  2. M. Zhan, J. Guo, M.W. Fu, P.F. Gao, H. Long, and F. Ma, J. Mater. Process. Technol. 257, 15. (2018).

    Article  Google Scholar 

  3. E. Balducci, L. Ceschini, and S. Messieri, JOM 70, 11. (2018).

    Article  Google Scholar 

  4. X.C. Meng, Y.X. Huang, J. Cao, J.J. Shen, and J.F. dos Santos, Prog. Mater. Sci. 115, 20. (2020).

    Google Scholar 

  5. Q.X. Xia, G.F. Xiao, H. Long, X.Q. Cheng, and X.F. Sheng, Int. J. Mach. Tools. Manuf. 85, 100. (2014).

    Article  Google Scholar 

  6. X.S. Yang, W.J. Huang, X.H. Zhu, R. Zhang, F. Guo, and L. Hu, Met. Mater. Int. 27, 4793. (2021).

    Article  Google Scholar 

  7. S. Chen, X.H. Zhan, Y.Q. Zhao, Y.F. Wu, and D.T. Liu, Met. Mater. Int. 27, 1671. (2021).

    Article  Google Scholar 

  8. C.C. Wong, T.A. Dean, and J. Lin, Int. J. Mach. Tools. Manuf. 43, 1419. (2003).

    Article  Google Scholar 

  9. D.Y. Yang, M. Bambach, J. Cao, J.R. Duflou, P. Groche, T. Kuboki, A. Sterzing, A.E. Tekkaya, C.W. Lee, and C.I.R.P. Ann-Manuf, Techn. 67, 743. (2018).

    Google Scholar 

  10. P.F. Gao, C. Yu, M.W. Fu, L. Xing, and J. Guo, Chinese. J. Aeronaut. 35, 320. (2022).

    Article  Google Scholar 

  11. B. Kinsey, Z.H. Liu, and J. Cao, J. Mater. Process. Technol. 99, 145. (2000).

    Article  Google Scholar 

  12. M. Merklein, M. Johannes, M. Lechner, and A. Kuppert, J. Mater. Process. Technol. 214, 151. (2014).

    Article  Google Scholar 

  13. J. Liu, A.L. Wang, H.X. Gao, J. Gandra, K. Beamish, L.H. Zhan, and L.L. Wang, J. Mater. Process. Technol. 257, 33. (2018).

    Article  Google Scholar 

  14. M. Abbasi, S.R. Hamzeloo, M. Ketabchi, M.A. Shafaat, and B. Bagheri, Int. J. Adv. Manuf. Tech. 73, 999. (2014).

    Article  Google Scholar 

  15. X.D. Ma, and Y.P. Guan, Met. Soc. China 26, 228. (2016).

    Google Scholar 

  16. M. Parente, R. Safdarian, A.D. Santos, A. Loureiro, P. Vilaca, and R.M.N. Jorge, Int. J. Adv. Manuf. Tech. 83, 2129. (2015).

    Article  Google Scholar 

  17. M.H. Wang, J. Zhou, C.F. He, M. Yang, and F. Xiang, J. Mech. Eng. 45(245), 234. ((in Chinese)) (2009).

    Article  Google Scholar 

  18. J.H. Zhang, Z.X. Chen, L.Q. Xu, and J.H. Yu, Technology 38, 156. ((in Chinese)) (2013).

    Google Scholar 

  19. Z.H. Yin, K. Liu, J.X. Yu, Y. Tian, and M.Z. Hu, Technology 41, 39. ((in Chinese)) (2016).

    Google Scholar 

  20. S.L. Ma, M.Z. Li, G. Sun, X.J. Li, and Z.R. Qian, J. Jilin Univ. (Eng. Technol. Edition). 38, 334. ((in Chinese)) (2008).

    Google Scholar 

  21. Z. Zimniak, and A. Piela, J. Mater. Process. Technol. 106, 254. (2000).

    Article  Google Scholar 

  22. X.G. Qiu and W.L. Chen, J. Mater. Process. Technol. 187, 128. (2007).

    Article  Google Scholar 

  23. Y.P. Guan, L.J. Wang, A.S. Lv, J. Zhao, and L.X. Ma, J. Plast. Eng. 17, 28. ((in Chinese)) (2010).

    Google Scholar 

  24. X.J. Liu, W.H. Zhou, B. Liu, Z. Wang, and C. Wang, Mater. Sci. Technol. 23, 114. ((in Chinese)) (2015).

    Google Scholar 

  25. J.M. Wang, Y. Zhao, and Y.F. Jiang, Forg. Stamp. Technol. 32, 28. ((in Chinese)) (2007).

    Google Scholar 

  26. H.R. Zhang, M. Zhan, Z.B. Zheng, R. Li, W. Lyu, and Y.D. Lei, Front. Mater. 8, 1. (2021).

    Google Scholar 

  27. H.R. Zhang, M. Zhan, Z.B. Zheng, R. Li, F. Ma, X.L. Cui, S.W. Chen, and Y.D. Lei, Int. J. Adv. Manuf. Tech. 120, 3113. (2022).

    Article  Google Scholar 

  28. G.F. Xiao, Q.X. Xia, and J.C. Long, Int. J. Adv. Manuf. Tech. 97, 2979. (2018).

    Article  Google Scholar 

  29. T. Sakthivel, G.S. Sengar, and J. Mukhopadhyay, Int. J. Adv. Manuf. Tech. 43, 468. (2009).

    Article  Google Scholar 

  30. Z. Yan, X. Liu, and H. Fang, Int. J. Adv. Manuf. Tech. 91, 3025. (2017).

    Article  Google Scholar 

  31. J. Zhang, M. Zhan, H. Yang, Z.Q. Jiang, and D. Han, Comp. Mater. Sci. 53, 303. (2012).

    Article  Google Scholar 

  32. K. Essa and P. Hartley, Int. J. Mater. Form. 2, 271. (2009).

    Article  Google Scholar 

  33. M. Zhan, X.X. Wang, and H. Long, Mater. Des. 108, 207. (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from the National Key R&D Program of China (Project 2020YFA0711100), the National Science Fund for Distinguished Young Scholars of China (Project 51625505), the National Natural Science Foundation of China (Project 52105399, Project U1937203 and Project U1910213) and the Natural Science Basic Research Plan in Shaanxi Province of China (Project 2020JQ-166).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Zhan or Zebang Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhan, M., Zheng, Z. et al. Manufacture of Thin-Walled Axisymmetric Components by Friction Stir Welding and Spinning of Al-Li Alloy. JOM 74, 3248–3260 (2022). https://doi.org/10.1007/s11837-022-05394-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05394-x

Navigation