Skip to main content
Log in

Production and Characterization of Sputtered Y-doped BaZrO3 for Proton Conducting Oxides

  • Recent Advances in Multicomponent Alloys and Ceramics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A comprehensive study was carried out to evaluate single-phase BaZr0.80Y0.20O3-δ thin films produced by RF magnetron sputtering using a single target material. The present study mainly involved three objectives, i.e., production of a single-phase BaZr0.80Y0.20O3-δ sputter target using a deformable compaction die, RF sputtering of thin films using a single target material, and the electrochemical assessment of the BaZr0.80Y0.20O3-δ thin films. A single-phase sputter target with a 2″ diameter was produced by pressing at 125 MPa via deformable compaction dies and sintering at 1500°C for 10 h. Highly textured BaZr0.80Y0.20O3-δ thin films were obtained by RF sputtering of the target material fabricated in the study. Electrochemical investigations based on 4-probe resistivity measurement and electrochemical impedance spectrometry revealed that (110) oriented BaZr0.80Y0.20O3-δ films exhibited an improved conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Wei, J. Wang, X. Yu, Z. Li, Y. Zhao, and J. Chai, Int. J. Hydrog. Energy 46, 23868 (2021)

    Article  Google Scholar 

  2. Y. Cao, H. A. Dhahad, Y.-L. Sun, M. Abdollahi Haghghi, M. Delpisheh, H. Athari, and N. Farouk, Int. J. Hydrog. Energy 46, 19569 (2021).

  3. H. An, H.-W. Lee, B.-K. Kim, J.-W. Son, K.J. Yoon, H. Kim, D. Shin, H.-I. Ji, and J.-H. Lee, Nat. Energy 3, 870 (2018).

    Article  Google Scholar 

  4. S.N. Basu, and A. Pandey, JOM 71, 3780 (2019).

    Article  Google Scholar 

  5. E. Vøllestad, R. Strandbakke, M. Tarach, D. Catalán-Martínez, M.-L. Fontaine, D. Beeaff, D.R. Clark, J.M. Serra, and T. Norby, Nat. Mater. 18, 752 (2019).

    Article  Google Scholar 

  6. S. Choi, T.C. Davenport, and S.M. Haile, Energy Environ. Sci. 12, 206 (2019).

    Article  Google Scholar 

  7. S.C.V. Ram, F. Feyzbar-Khalkhali-Nejad, M.K. Mahapatra, and T.-S. Oh, JOM 73, 2122 (2021).

    Article  Google Scholar 

  8. S. Gopalan, JOM 54, 26 (2002).

    Article  Google Scholar 

  9. S.S. Hashim, M.R. Somalu, K.S. Loh, S. Liu, W. Zhou, and J. Sunarso, Int. J. Hydrog. Energy 43, 15281 (2018).

    Article  Google Scholar 

  10. H. Wang, X. Wang, B. Meng, X. Tan, K.S. Loh, J. Sunarso, and S. Liu, J. Ind. Eng. Chem. 60, 297 (2018).

    Article  Google Scholar 

  11. A.S. Farlenkov, M.I. Vlasov, N.M. Porotnikova, I.A. Bobrikov, A.V. Khodimchuk, and M.V. Ananyev, Int. J. Hydrog. Energy 45, 23455 (2020).

    Article  Google Scholar 

  12. Y. Okuyama, S. Nagamine, A. Nakajima, G. Sakai, N. Matsunaga, F. Takahashi, K. Kimata, T. Oshima, and K. Tsuneyoshi, RSC Adv. 6, 34019 (2016).

    Article  Google Scholar 

  13. K. Ghasemzadeh, M. N. Nezhad, and A. Basile, in Hydrog. Prod. Sep. Purif. Energy (Institution of Engineering and Technology, 2017), pp. 289.

  14. R. Pornprasertsuk, O. Kosasang, K. Somroop, M. Horprathum, P. Limnonthakul, P. Chindaudom, and S. Jinawath, Solid State Sci. 13, 1429 (2011).

    Article  Google Scholar 

  15. C. Y. Regalado Vera, H. Ding, D. Peterson, W. T. Gibbons, M. Zhou, and D. Ding, J. Phys. Energy 3, 032019 (2021).

  16. E. Fabbri, T.K. Oh, S. Licoccia, E. Traversa, and E.D. Wachsman, J. Electrochem. Soc. 156, 38 (2009).

    Article  Google Scholar 

  17. C. Zhang, S. Li, X. Liu, X. Zhao, D. He, H. Qiu, Q. Yu, S. Wang, and L. Jiang, Int. J. Hydrogen Energy 38, 12921 (2013).

    Article  Google Scholar 

  18. J.S. Fish, S. Ricote, R. O’Hayre, and N. Bonanos, J. Mater. Chem. A 3, 5392 (2015).

    Article  Google Scholar 

  19. G. Taglieri, M. Tersigni, P. Villa, and C. Mondelli, Int. J. Inorg. Mater. 1, 103 (1999).

    Article  Google Scholar 

  20. A. D’Epifanio, E. Fabbri, E. Di Bartolomeo, S. Licoccia, and E. Traversa, ECS Trans. 7, 2337 (2019).

    Article  Google Scholar 

  21. B. Meng, Rare Met. 25, 79 (2006).

    Article  Google Scholar 

  22. F. Iguchi, T. Tsurui, N. Sata, Y. Nagao, and H. Yugami, Solid State Ionics 180, 563 (2009).

    Article  Google Scholar 

  23. N. Ito, M. Iijima, K. Kimura, and S. Iguchi, J. Power Sourc. 152, 200 (2005).

    Article  Google Scholar 

  24. J.M. Serra, and W.A. Meulenberg, J. Am. Ceram. Soc. 90, 2082 (2007).

    Article  Google Scholar 

  25. M. Fallah Vostakola and B. Amini Horri, Energies 14, 1280 (2021).

  26. J. Engels, D. Griesche, R. Waser, and T. Schneller, Thin Solid Films 636, 446 (2017).

    Article  Google Scholar 

  27. Y. Kitano, T. Matsui, N. Fujimura, K. Morii, and T. Ito, J. Cryst. Growth 243, 164 (2002).

    Article  Google Scholar 

  28. I. Chang, J. Y. Paek, and S. W. Cha, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 33, 021515 (2015).

  29. T. Sakai, T. Kato, H. Katsui, Y. Tanaka, and T. Goto, Mater. Today Commun. 24, 101184 (2020).

    Article  Google Scholar 

  30. W.H. Tanveer, S. Ji, W. Yu, G.Y. Cho, Y.H. Lee, T. Park, Y. Lee, Y. Kim, and S.W. Cha, Curr. Appl. Phys. 16, 1680 (2016).

    Article  Google Scholar 

  31. C.-C. Lo, and T.-E. Hsieh, Ceram. Int. 38, 3977 (2012).

    Article  Google Scholar 

  32. S. Duval, P. Holtappels, U. Vogt, E. Pomjakushina, K. Conder, U. Stimming, and T. Graule, Solid State Ionics 178, 1437 (2007).

    Article  Google Scholar 

  33. J. Li, C. Wang, X. Wang, and L. Bi, Electrochem. Commun. 112, 106672 (2020).

    Article  Google Scholar 

  34. S.B.C. Duval, P. Holtappels, U. Stimming, and T. Graule, Solid State Ionics 179, 1112 (2008).

    Article  Google Scholar 

  35. P. Babilo, and S.M. Haile, J. Am. Ceram. Soc. 88, 2362 (2005).

    Article  Google Scholar 

  36. M.P. Pechini, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, US Patent No. 3330697 (1967).

  37. D. Sari, Z.C. Torunoglu, Y.E. Kalay, and T. Ozturk, Ceram. Int. 43, 15185 (2017).

    Article  Google Scholar 

  38. ASTM International, Astm B962-13 (2013).

  39. F. Pişkin, H. Akyıldız, and T. Öztürk, Int. J. Hydrog. Energy 40, 7553 (2015).

    Article  Google Scholar 

  40. F. Pişkin, and T. Öztürk, J. Memb. Sci. 524, 631 (2017).

    Article  Google Scholar 

  41. F. Pişkin, and T. Öztürk, J. Alloys Compd. 775, 411 (2019).

    Article  Google Scholar 

  42. D. Sarı, F. Pişkin, Z.C. Torunoğlu, B. Yaşar, Y.E. Kalay, and T. Öztürk, Solid State Ionics 326, 124 (2018).

    Article  Google Scholar 

  43. D. Sarı, B. Yaşar, F. Pişkin, Y.E. Kalay, and T. Öztürk, J. Electrochem. Soc. 166, F1157 (2019).

    Article  Google Scholar 

  44. Z. Ning, Z. Da-Ming, and Z. Gong, Mater. Sci. Eng. B 166, 34 (2010).

    Article  Google Scholar 

  45. K.D. Kreuer, Annu. Rev. Mater. Res. 33, 333 (2003).

    Article  Google Scholar 

Download references

Acknowledgement

This work was funded by TUBITAK under Project Number 119M065, which the authors gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatİh Pİşkİn.

Ethics declarations

Conflict of interest

The corresponding author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pİşkİn, B., Pİşkİn, F. Production and Characterization of Sputtered Y-doped BaZrO3 for Proton Conducting Oxides. JOM 74, 4181–4187 (2022). https://doi.org/10.1007/s11837-022-05387-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05387-w

Navigation