Skip to main content
Log in

Effect of In-Situ TiB2 Particles on the Creep Properties of 3 Wt.% TiB2/Al-Cu-Mg-Ag Composite

  • Recent Advances in Multicomponent Alloys and Ceramics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, an in-situ 3 wt.% TiB2/Al-Cu-Mg-Ag composite was successfully fabricated by the salt-reaction method. The elevated temperature creep behaviour of Al-Cu-Mg-Ag matrix alloy and composite at 180–220°C under applied stresses of 150–275 MPa was investigated. The results showed that in-situ TiB2 particles greatly refined the grain size and improved the elevated temperature creep properties of composite. Compared with the matrix alloy, the steady creep rates of the composite were 45–320% lower than those of the matrix alloy, and the composite exhibited lower creep strain and longer creep life under the same creep conditions. The better creep behaviour of composite was attributed to the reinforcing effect of TiB2 particles and plenty of θ′ precipitates with small diameters in the composite. The true stress exponent of both the matrix alloy and composite is 5, indicating that their creep mechanism can be attributed to the dislocation climb mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used in this study are available from the authors on request.

References

  1. Z. Ahmad, JOM-J. Minerals Metals & Mater. Soc. 55, 35–39 https://doi.org/10.1007/s11837-003-0224-6 (2003).

    Article  Google Scholar 

  2. C. Yang, P. Zhang, D. Shao, R.H. Wang, L.F. Cao, J.Y. Zhang, G. Liu, B.A. Chen, and J. Sun, Acta Mater. 119, 68 https://doi.org/10.1016/j.actamat.2016.08.013 (2016).

    Article  Google Scholar 

  3. C. Wu, K. Ma, J. Wu, P. Fang, G. Luo, F. Chen, Q. Shen, L. Zhang, J.M. Schoenung, and E.J. Lavernia, Mater. Sci. Eng., A 675, 421 https://doi.org/10.1016/j.msea.2016.08.062 (2016).

    Article  Google Scholar 

  4. I.J. Polmear, G. Pons, Y. Barbaux, H. Octor, C. Sanchez, A.J. Morton, W.E. Borbidge, and S. Rogers, Mater. Sci. Technol. 15, 861 https://doi.org/10.1179/026708399101506599 (1999).

    Article  Google Scholar 

  5. M. Gazizov, and R. Kaibyshev, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 702, 29 https://doi.org/10.1016/j.msea.2017.06.110 (2017).

    Article  Google Scholar 

  6. S.P. Ringer, T. Sakurai, and I.J. Polmear, Acta Mater. 45, 3731 https://doi.org/10.1016/s1359-6454(97)00039-6 (1997).

    Article  Google Scholar 

  7. J.S. Robinson, R.L. Cudd, and J.T. Evans, Mater. Sci. Technol. 19, 143 https://doi.org/10.1179/026708303225009373 (2003).

    Article  Google Scholar 

  8. Z. Huda, T. Zaharinie, J. Min Goh (2010) J. Aerospace Eng. 23: 124

  9. F.M. Xu, L.C.M. Wu, G.W. Han, and Y. Tan, Chin. J. Aeronaut. 20, 115–119 https://doi.org/10.1016/S1000-9361(07)60016-8 (2007).

    Article  Google Scholar 

  10. X.D. Hui, Y.S. Yang, Z.F. Wang, G.Q. Yuan, and X.C. Chen, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 282, 187–192 https://doi.org/10.1016/S0921-5093(99)00751-0 (2000).

    Article  Google Scholar 

  11. D. Chen, M.L. Wang, Y.J. Zhang, X.F. Li, Z. Chen, N.H. Ma, and H.W. Wang, Mater. Res. Innovations 18, 514–518 https://doi.org/10.1179/1432891714Z.000000000731 (2014).

    Article  Google Scholar 

  12. M. Emamy, M. Mahta, and J. Rasizadeh, Compos. Sci. Technol. 66, 1063 (2006).

    Article  Google Scholar 

  13. Y.W. Shen, X.F. Li, T.R. Hong, J.W. Geng, and H.W. Wang, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 655, 26. (2016)

    Article  Google Scholar 

  14. B.W. Zhao, Q. Yang, L. Wu, X.F. Li, M.L. Wang, and H.W. Wang, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 742, 573–583 https://doi.org/10.1016/j.msea.2018.11.032 (2019).

    Article  Google Scholar 

  15. A. Saxena, M. Indriyati, P. Rajveer, H.R.K. Biswas, and S. Das, Mater. Sci. Technol. 35, 953–961 (2019).

    Google Scholar 

  16. S.L. Pramod, S.R. Bakshi, and B.S. Murty, J. Mater. Eng. Perform. 24, 2185–2207 https://doi.org/10.1007/s11665-015-1424-2 (2015).

    Article  Google Scholar 

  17. M. Mandal, and R. Mitra, JOM 68, 1902–1908 https://doi.org/10.1007/s11837-016-1911-4 (2016).

    Article  Google Scholar 

  18. X.Y. Liu, Q.L. Pan, X.L. Zhang, S.X. Liang, F. Gao, L.Y. Zheng, and M.X. Li, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 599, 160. (2014)

    Article  Google Scholar 

  19. M.H. Huang, H.W. Wang, X.F. Li, and H.Z. Yi, Rare Metal Mat. Eng. 34, 1394. (2005)

    Google Scholar 

  20. M.E. Van Dalen, D.C. Dunand, and D.N. Seidman, Acta Mater. 59, 5224. (2005)

    Article  Google Scholar 

  21. W.J. Li, B. Cai, Y.C. Wang, Z.X. Liu, and S. Yang, Mater. Sci. Eng., A 615, 148–152 https://doi.org/10.1016/j.msea.2014.07.071 (2014).

    Article  Google Scholar 

  22. W.G. Zhao, J.G. Wang, H.L. Zhao, D.M. Yao, and Q.C. Jiang, Mater. Sci. Eng., A 515, 10–13 https://doi.org/10.1016/j.msea.2009.03.080 (2009).

    Article  Google Scholar 

  23. W.-S. Tian, Q.-L. Zhao, Q.-Q. Zhang, F. Qiu, and Q.-C. Jiang, Mater. Sci. Eng., A 700, 42–48 https://doi.org/10.1016/j.msea.2017.05.101 (2017).

    Article  Google Scholar 

  24. P. Zhang, Scripta Mater. 52, 277–282 https://doi.org/10.1016/j.scriptamat.2004.10.017 (2005).

    Article  Google Scholar 

  25. S. Latha, M.D. Mathew, P. Parameswaran, K. Bhanu Sankara Rao, S.L. Mannan (2008) Int. J. Pressure Vessels and Piping, 85: 866

  26. M. Vogelsang, R.J. Arsenault, R.M. Fisher, (1986) Metall. Trans. A, Phys. Metall. Mater. Sci. (USA), 17A, 379

  27. R.J. Arsenault, and N. Shi, Mater. Sci. Eng. (Switzerland) 81, 175. (1986)

    Article  Google Scholar 

  28. S.P. Ringer, B.C. Muddle, and I.J. Polmear, MMTA 26, 1659. (1995)

    Article  Google Scholar 

  29. M. Gazizov, and R. Kaibyshev, Mater. Sci. Eng., A 625, 119–130 https://doi.org/10.1016/j.msea.2014.11.094 (2015).

    Article  Google Scholar 

  30. L. Jiang, J.K. Li, G. Liu, R.H. Wang, B.A. Chen, J.Y. Zhang, J. Sun, M.X. Yang, G. Yang, J. Yang, and X.Z. Cao, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 637, 139 (1986).

    Article  Google Scholar 

  31. L. Fan, Q.T. Hao, and W.K. Han, Rare Met. 34, 308. (2015)

    Article  Google Scholar 

  32. X.F. Xu, Y.G. Zhao, M. Zhang, Y.H. Ning, X.D. Wang (2018) J. Wuhan Univ. Technol.-Mat. Sci. Edit., 33: 710

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no.11974316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiefang Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, H., Li, M., Zhang, G. et al. Effect of In-Situ TiB2 Particles on the Creep Properties of 3 Wt.% TiB2/Al-Cu-Mg-Ag Composite. JOM 74, 4121–4128 (2022). https://doi.org/10.1007/s11837-022-05251-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05251-x

Navigation