Skip to main content

Advertisement

Log in

Aluminum Billets Heat Treatment Using Hot Flue Gas in Batch Homogenizing Preheating Furnace for Energy Efficiency and Cycle Time Reduction in Cast House

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Exhaust flue gas temperature fired in aluminum industry furnaces can reach approximately 600–650 °C, with the thermal accounting for 40–50% of the total input energy. Therefore, the heat recovery of exhaust flue gas can be utilized in an adapted furnace to heat aluminum billets with the heat recovered from flue gas. This work aims to study the effectiveness of preheating billets with flue gas and assess a flawless design for a green preheating furnace. Therefore, a finite element heat treatment (FEHT) and turbulent fluid flow are coupled in a computational fluid dynamics (CFD) model to simulate billet logs in the furnace and the energy consumption and the heat treatment cycle time. The results show the persuasiveness of the novel strategy, with a decrease in energy loss and reducing the heat treatment time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Hu, M.C.M. Bakker, and P.G. de Heij, Waste Manag. 31(12), 2422. (2011).

    Article  Google Scholar 

  2. L.Z. Yang, T. Jiang, G.H. Li, Y.F. Guo, and F. Chen, High Temp. Mater. Process 37(4), 357. (2018).

    Article  Google Scholar 

  3. D. Baffari, G. Buffa, G. Ingarao, A. Masnata, and L. Fratini, Procedia Manufacturing 29, 560. (2019).

    Article  Google Scholar 

  4. M. Samuel, J. Mater. Process. Technol. 135, 117. (2003).

    Article  Google Scholar 

  5. S.K. Padamata, A. Yasinskiy, and P. Polyakov, JOM 73, 2603. (2021).

    Article  Google Scholar 

  6. S. Capuzzi, and G. Timelli, Metals 8, 24. (2018).

    Article  Google Scholar 

  7. K. Vas, in Using technology and automation for enhanced returns in aluminium scrap processing. Paper presented at the 21st International Recycled Aluminium Conference, Dubai, U.A.E., 3-5 Nov 2013

  8. Z. Luo, A. Soria, Prospective study of the world aluminium industry. EUR22951EN.2008. https://core.ac.uk/download/pdf/38614531.pdf. Accessed 19 Mar 2007

  9. A. Steinfeld, Energy 22, 311. (1997).

    Article  Google Scholar 

  10. L. Kuchariková, E. Tillová, and O. Bokůvka, Transp. Probl. 11, 117. (2016).

    Article  Google Scholar 

  11. W.D. Menzie, J.J. Barry, D.I. Bleiwas, E.L. Bray, T.G. Goonan, and G. Matos, The Global Flow of Aluminum from 2006 Through 2025: U.S. Geological Survey Open-File Report 2010–1256, 73 (2010) https://pubs.usgs.gov/ofr/2010/1256/

  12. R. Zhao, C. Nowicki, L. Gosselin, and C. Duchesne, Int. J. Energy Res. 345 (2016)

  13. J.M. Cullen, and J.M. Allwood, Environ. Sci. Technol. 47, 1. (2013).

    Article  Google Scholar 

  14. R.L. Milford, J.M. Allwood, and J.M. Cullen, Resour. Conserv. Recycl. 55, 1185. (2011).

    Article  Google Scholar 

  15. H. Kvande, Inorg. Bioinorg. Chem. 1(10), 234. (2015).

    Google Scholar 

  16. G. Liu, and D.B. Müller, J. Clean Prod. 35, 108. (2012).

    Article  Google Scholar 

  17. The Aluminium Association. Aluminium Recycling n.d. https://www.aluminum.org/industries/production/recycling. Accessed 19 Aug 2019

  18. H. Kvande, J. Occup. Environ. Med. 56, 2. (2004).

    Article  Google Scholar 

  19. M. Bertram, K.J. Martchek, and G. Rombach, J. Ind. Ecol. 13, 650. (2009).

    Article  Google Scholar 

  20. S. Capuzzi, and G. Timelli, Metals 8, 24. (2008).

    Google Scholar 

  21. R. Lumley, Fundamentals of aluminium metallurgy: production, processing and applications (Woodhead Publishing Ltd., Cambridge, 2011), pp 49–57.

    Book  Google Scholar 

  22. L. Acevedo, S. Usón, and J. Uche, Energy Conv. Manag. 89, 484. (2015).

    Article  Google Scholar 

  23. S. Brückner, S. Liu, L. Miró, M. Radspieler, L.F. Cabeza, and E. Lävemann, Appl. Energy 151, 157. (2015).

    Article  Google Scholar 

  24. T. Arink, and M.I. Hassan, in Metal scrap preheating using flue gas waste heat. Paper presented at the 8th International Conference on Applied Energy (ICAE2016), Beijing, China, 8-11 Oct (2016)

  25. C. Nowicki, and L. Gosselin, JOM 64, 990. (2012).

    Article  Google Scholar 

  26. E. Balomenos, I. Gianopoulou, D. Panias, I. Paspaliaris, A. Nikolaos and K. Perry, in Efficient and complete exploitation of the bauxite residue (Red Mud) produced in the Bayer process. Paper presented at the European Metallurgical Conference (EMC-2011), Düsseldorf, Germany, 26-29 June (2011)

  27. Y.J. Yang, M. Hyland, Z.W. Wang, and C. Seal, Can. Metall. Q. 54, 149. (2015).

    Article  Google Scholar 

  28. G. Lu, T. Zhang, L. Ma, Y. Wang, W. Zhang, Z. Zhang, and L. Wang, Hydrometallurgy 188, 248. (2019).

    Article  Google Scholar 

  29. B. Zhou, Y. Yang, M.A. Reuter, and U.M.J. Boin, Miner. Eng. 19(3), 308. (2006).

    Article  Google Scholar 

  30. N. Oumarou, D. Kocaefe, Y. Kocaefe, B. Morais, and J. Chabot, Mat. Sci. Tech. 3, 2071. (2013).

    Google Scholar 

  31. F. Grégoire, and L. Gosselin, Int. J. Therm. Sci. 129, 532. (2018).

    Article  Google Scholar 

  32. A.R. Tajik, T. Shamim, M. Zaidani, and R.K. Abu Al-Rub, Appl. Energy 230, 207. (2018).

    Article  Google Scholar 

  33. K. Padamata, A.S. Yasinskiy, and P.V. Polyakov, J. Sib. Fed. Univ. Chem. 11, 18. (2018).

    Google Scholar 

  34. W. Aluminium, Fluoride Emissions. http://www.world-aluminium.org/statistics/fluoride-emission/. Accessed 22 Aug 2019

  35. M.A. Diop, X. Chen and M.I. Hassan, in Billets heat treatment using flue gas for energy efficiency and batching batching cycle time reduction. Paper presented at the 8th International Conference on Applied Energy (ICAE2016), Beijing, China, 8-11 Oct (2016)

  36. M.A. Diop, Z. Shi, M. Fafard, S.A. Bousso, T. Wenju, and Z. Wang, J. Sustain. Metall. 7(1), 46. (2021).

    Article  Google Scholar 

  37. Hertwich, Leading technology in the aluminium cast house: melting. https://docplayer.net/26785654-Leading-technology-in-the-aluminium-casthouse-casting.html. Accessed 02 Aug 2012

  38. I.C. Álvarez, J. Barbero, and J.L. Zofío, J. Stat. Softw. 95(3), 1. (2020).

    Article  Google Scholar 

  39. E.S. Menon, Transmission pipeline calculations and simulations manual (Elsevier Science, Oxford, 2015), pp 431–471.

    Book  Google Scholar 

Download references

Acknowledgements

The present work is supported by “the Fundamental Research Funds for the Central Universities” under the grant number N°2125012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouhamadou A. Diop.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 399 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diop, M.A., Liu, X. & Feng, S. Aluminum Billets Heat Treatment Using Hot Flue Gas in Batch Homogenizing Preheating Furnace for Energy Efficiency and Cycle Time Reduction in Cast House. JOM 74, 2770–2782 (2022). https://doi.org/10.1007/s11837-022-05228-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05228-w

Navigation