Skip to main content
Log in

Extraction Separation of Ti(IV) and Fe(II) Using D2EHPA from the Raffinate Obtained After Extraction of Scandium from Titanium Dioxide Waste Acid

  • Recovery of Rare Earth and Critical Metals from Unconventional Sources
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The raffinate obtained after extracting scandium from titanium dioxide waste acid (hereafter, waste acid-A) contains a lot of valuable components. The extraction separation process of Ti(IV) and Fe(II) from the raffinate using a D2EHPA-sulfonated kerosene extraction system was studied under different conditions. The results showed that the Ti(IV) extraction rate was 100% with 1.66% Fe(II) co-extracted using 30% D2EHPA with an O/A rate of 1:2 at 30°C for 20 min in a two-stage countercurrent test. Then, the extracted Ti(IV) was stripped with NH4HF2 solution. Under the optimal conditions, all the Ti(IV) was stripped, together with the stripping of 14.52% Fe(II). Moreover, the reaction mechanism of Ti(IV) with D2EHPA in sulfuric acid medium was determined using the results of the saturation capacity method and FT-IR analysis. Ti(IV) was extracted in the form of (TiO)2A6H2. Finally, a conceptual flow chart for recovering relatively high-purity titanium from the raffinate has been innovatively proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V.I. Lakshmanan, R. Sridhar, T. Sheikhzeinoddin, M.A. Halim, and R. Roy, TMS, 295 (2012).

  2. R.K. Singh, and P.M. Dhadke, J. Serb. Chem. Soc. 67, 507 (2002).

    Article  Google Scholar 

  3. J. Zhou, Q. Yu, Y. Huang, J.J. Meng, Y.D. Chen, S.Y. Ning, X.P. Wang, Y.Z. Wei, X.B. Yin, and J. Liang, Hydrometallurgy 195, 105398 (2020).

    Article  Google Scholar 

  4. J. Yang, and Z.H. Zhang, Met. Mine 12, 52 (in Chinese) (1999).

    Google Scholar 

  5. C. Li, B. Liang, and L.H. Guo, Hydrometallurgy 89, 1 (2007).

    Article  Google Scholar 

  6. D.Q. Li, and C. Wang, Hydrometallurgy 48, 301 (1998).

    Article  Google Scholar 

  7. D. Zou, H.L. Li, J. Chen, and D.Q. Li, Hydrometallurgy 197, 105463 (2020).

    Article  Google Scholar 

  8. Y.H. Li, Q.G. Li, G.Q. Zhang, L. Zeng, Z.Y. Cao, W.J. Guan, and L.P. Wang, Hydrometallurgy 178, 1 (2018).

    Article  Google Scholar 

  9. K.C. Sole, Hydrometallurgy 51, 239 (1999).

    Article  Google Scholar 

  10. X.L. Hao, L. Lv, B. Liang, C. Li, P. Wu, and J. Wang, Hydrometallurgy 113–114, 185 (2012).

    Article  Google Scholar 

  11. K.C. Sole, Hydrometallurgy 51, 263 (1999).

    Article  Google Scholar 

  12. J. Jayachandran, and P.M. Dhadke, J. Chem. Eng. Jpn. 31, 465 (1998).

    Article  Google Scholar 

  13. G.C. da Silva, J.W.S.D. da Cunha, J. Dweck, and J.C. Afonso, Mineral Eng. 21, 416 (2008).

    Article  Google Scholar 

  14. R.K. Biswas, M.R. Zaman, and M.N. Islam, Hydrometallurgy 63, 159 (2002).

    Article  Google Scholar 

  15. P.N. Phalke, A.V. Sherikar, and P.M. Dhadke, Indian J. Chem. Sect. A 36, 446 (1997).

    Google Scholar 

  16. F. Islam, H. Rahman, and M. Ali, J. Inorg. Nucl. Chem. 41, 217 (1979).

    Article  Google Scholar 

  17. L.L. Zhang, T.A. Zhang, G.Z. Lv, W.G. Zhang, T.T. Li, and X.J. Cao, JOM 73, 1301 (2021).

    Article  Google Scholar 

  18. W.G. Zhang, T.A. Zhang, G.Z. Lv, W.H. Zhou, X.J. Cao, and H.Y. Zhu, JOM 70, 2837 (2018).

    Article  Google Scholar 

  19. T. Sato, Sigen-to-Sozai 119, 175 (2003).

    Article  Google Scholar 

  20. Y. Zhang, T.A. Zhang, G.Z. Lv, G.Q. Zhang, Y. Liu, and W.G. Zhang, Hydrometallurgy 166, 87 (2016).

    Article  Google Scholar 

  21. Z.N. Lou, X. Xiao, Y. Xiong, and Y.C. Zhai, Trans. Nonferrous Met. Soc. China 29, 397 (2019).

    Article  Google Scholar 

  22. S.H. Yin, W.Y. Wu, X. Bian, and F.Y. Zhang, Hydrometallurgy 131–132, 133 (2013).

    Article  Google Scholar 

  23. T. Sato, and T. Nakamura, Anal. Chim. Acta 76, 401 (1975).

    Article  Google Scholar 

  24. S.F. Weng, and Y.Z. Xu, Analysis of Fourier Transform Infrared Spectra, 3ed edn. (Chemical Industry Press, Beijing, 2016).

    Google Scholar 

  25. Z.H. Chen, and C.H. Liu, Titanium Dioxide Production and Application Technology (Chemical Industry Press, Beijing, 2005).

    Google Scholar 

Download references

Acknowledgements

The authors express sincere thanks to the National Natural Science Foundation of China (No. 51874078) and the Fundamental Research Funds for the Central Universities (No. N182504018) for financial support. The author was also thankful to lecturer Zhang Weiguang for his revision of the English Text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-an Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, Ta., Lv, G. et al. Extraction Separation of Ti(IV) and Fe(II) Using D2EHPA from the Raffinate Obtained After Extraction of Scandium from Titanium Dioxide Waste Acid. JOM 74, 1061–1069 (2022). https://doi.org/10.1007/s11837-021-05118-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05118-7

Navigation