Skip to main content
Log in

Dislocation-Limited Thermal Conductivity in LiF: Revisiting Perturbative Models

  • Exploring the Relationships Between Plastic Deformation and Heat
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We revisit models to describe phonon–dislocation interactions and resulting dislocation-limited thermal conductivity (k), particularly as applied to describe the temperature-dependent k behavior of LiF with significant dislocation densities. Coupling semiempirical models of phonon scattering from dislocation strain fields provided by Klemens and Carruthers with density functional theory description of the phonons and input parameters, we find that both models significantly overpredict the measured k of LiF, as found previously. However, more direct application of the quantum perturbation theory description, from which the models were derived, gives significantly stronger phonon–dislocation scattering and strongly underpredicts the measured k data. We revisit the derivation of phonon–dislocation–strain field scattering and provide numerical details regarding its implementation. This work demonstrates that quantum perturbative calculations, now accessible to modern computational architectures, may provide a reasonable description of dislocation-limited k in materials as governed by phonon–strain field interactions provided that questions regarding the relevant strain field range can be resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Yang, L. Xi, W. Qiu, L. Wu, X. Shi, L. Chen, J. Yang, W. Zhang, C. Uher, and D.J. Singh, npj Comput Mater. 2, 15015 (2016).

    Article  Google Scholar 

  2. P. Ball, Nature 492, 174 (2012).

    Article  Google Scholar 

  3. J.G. Thakare, C. Pandey, M.M. Mahapatra, and R.S. Mulik, Metals Mater. Int. 27, 1947 (2021).

    Article  Google Scholar 

  4. L. Wei, P.K. Kuo, R.L. Thomas, and T.R. Anthony, and W. F. Banholzer Phys. Rev. Lett. 70, 3764 (1993).

    Article  Google Scholar 

  5. D.T. Morelli, J.P. Heremans, and G.A. Slack, Phys. Rev. B 66, 195304 (2002).

    Article  Google Scholar 

  6. G.A. Slack, L.J. Schowalter, D. Morelli, and J.A. Freitas, J. Cryst. Growth 246, 287 (2002).

    Article  Google Scholar 

  7. L. Lindsay, D.A. Broido, and T.L. Reinecke, Phys. Rev. Lett. 111, 025901 (2013).

    Article  Google Scholar 

  8. T. Feng, L. Lindsay, and X. Ruan, Phys. Rev. B 96, 161201 (2017).

    Article  Google Scholar 

  9. J.S. Kang, M. Li, H. Wu, H. Nguyen, and Y. Hu, Science 361, 575 (2018).

    Article  Google Scholar 

  10. F. Tian, B. Song, X. Chen, N.K. Ravichandran, Y. Lv, K. Chen, S. Sullivan, J. Kim, Y. Zhou, T.-H. Liu, M. Goni, Z. Ding, J. Sun, G.A.G.U. Gamage, H. Sun, H. Ziyaee, S. Huyan, L. Deng, J. Zhou, A.J. Schmidt, S. Chen, C.-W. Chu, P.Y. Huang, D. Broido, L. Shi, G. Chen, and Z. Ren, Science 361, 582 (2018).

    Article  Google Scholar 

  11. S. Li, Q. Zheng, Y. Lv, X. Liu, X. Wang, P.Y. Huang, and D.G. Cahill, Science 361, 579 (2018).

    Article  Google Scholar 

  12. L. Lindsay, C. Hua, X.L. Ruan, and S. Lee, Mater. Today Phys. 7, 106 (2018).

    Article  Google Scholar 

  13. L. Lindsay, A. Katre, A. Cepellotti, and N. Mingo, J. Appl. Phys. 126, 050902 (2019).

    Article  Google Scholar 

  14. R. Hanus, R. Gurunathan, L. Lindsay, M.T. Agne, J. Shi, S. Graham, and G.J. Snyder, Appl. Phys. Rev. 8, 031311 (2021).

    Article  Google Scholar 

  15. J.M. Ziman, Electrons and Phonons (Oxford University Press, London, 1960), pp 1–503.

    MATH  Google Scholar 

  16. P.G. Klemens, Proc. Phys. Soc. Sec. A 68, 1113 (1955).

    Article  Google Scholar 

  17. C.A. Ratsifaritana and P.G. Klemens, Int. J. Thermophys. 8, 737 (1987).

    Article  Google Scholar 

  18. P. Carruthers, Phys. Rev. 114, 995 (1959).

    Article  MathSciNet  Google Scholar 

  19. P. Carruthers, Rev. Mod. Phys. 33, 92 (1961).

    Article  MathSciNet  Google Scholar 

  20. L. Lindsay, D.A. Broido, and T.L. Reinecke, Phys. Rev. Lett. 109, 095901 (2012).

    Article  Google Scholar 

  21. B. Smith, L. Lindsay, J. Kim, E. Ou, R. Huang, and L. Shi, Appl. Phys. Lett. 114, 221902 (2019).

    Article  Google Scholar 

  22. E.N. Economou, Green’s Functions in Quantum Physics, 3rd edn. (Springer, Berlin, 2006), pp 1–325.

    Book  Google Scholar 

  23. N. Mingo, K. Esfarjani, D.A. Broido, and D.A. Stewart, Phys. Rev. B 81, 045408 (2010).

    Article  Google Scholar 

  24. F. Körmann, Y. Ikeda, B. Grabowski, and M.H.F. Sluiter, npj Comp. Mater. 3, 36 (2017).

    Google Scholar 

  25. P.B. Allen, T. Berlijn, D.A. Casavant, and J.M. Soler, Phys. Rev. B 87, 085322 (2013).

    Article  Google Scholar 

  26. N.A. Katcho, J. Carrete, W. Li, and N. Mingo, Phys. Rev. B 90, 094117 (2014).

    Article  Google Scholar 

  27. C.A. Polanco and L. Lindsay, Phys. Rev. B 97, 014303 (2018).

    Article  Google Scholar 

  28. C.A. Polanco, and L. Lindsay, Phys. Rev. B 98, 014306 (2018).

    Article  Google Scholar 

  29. T. Wang, J. Carrete, A. van Roekeghem, N. Mingo, and G.K.H. Madsen, Phys. Rev. B 95, 245304 (2017).

    Article  Google Scholar 

  30. T. Wang, J. Carrete, N. Mingo, G.K.H. Madsen, and A.C.S. Appl, Mater. Interfaces 11, 8175 (2019).

    Article  Google Scholar 

  31. S. Mu, R.J. Olsen, B. Dutta, L. Lindsay, G.D. Samolyuk, T. Berlijn, E.D. Specht, K. Jin, H. Bei, T. Hickel, B.C. Larson, and G.M. Stocks, npj Comp. Mater. 6, 4 (2020).

    Google Scholar 

  32. S. Thébaud, C.A. Polanco, L. Lindsay, and T. Berlijn, Phys. Rev. B 102, 094206 (2020).

    Article  Google Scholar 

  33. D. Kotchetkov, J. Zou, A.A. Balandin, D.I. Florescu, and F.H. Pollak, Appl. Phys. Lett. 79, 4316 (2001).

    Article  Google Scholar 

  34. B. Sun, G. Haunschild, C.A. Polanco, J. Ju, L. Lindsay, G. Koblmüller, and Y.K. Koh, Nat. Mater. 18, 136 (2019).

    Article  Google Scholar 

  35. H. Li, R. Hanus, C.A. Polanco, A. Zeidler, G. Koblmüller, Y.K. Koh, and L. Lindsay, Phys. Rev. B 102, 014313 (2020).

    Article  Google Scholar 

  36. Y. Sun, Y. Zhou, J. Han, W. Liu, C. Nan, Y. Lin, M. Hu, and B. Xu, npj Comp. Mater. 5, 97 (2019).

    Google Scholar 

  37. Y. Sun, Y. Zhou, R. Gurunathan, J.-Y. Zhang, M. Hu, W. Liu, B. Xu, and G.J. Snyder, J. Mater. Chem. C 9, 8506 (2021).

    Article  Google Scholar 

  38. J. Xin, H. Wu, X. Liu, T. Zhu, G. Yu, and X. Zhao, Nano Energy 34, 428 (2017).

    Article  Google Scholar 

  39. V. Karthikeyan, C.M. Arava, M.Z. Hlaing, B. Chen, C.H. Chan, K.-H. Lam, and V.A.L. Roy, Scr. Mater. 174, 95 (2020).

    Article  Google Scholar 

  40. Y. Sun, Y. Zhou, J. Han, M. Hu, B. Xu, and W. Liu, J. Appl. Phys. 127, 045106 (2020).

    Article  Google Scholar 

  41. Y. Cheng, M. Nomura, S. Volz, and S. Xiong, J. Appl. Phys. 130, 040902 (2021).

    Article  Google Scholar 

  42. T. Ninomiya, J. Phys. Soc. Jpn. 36, 399 (1974).

    Article  Google Scholar 

  43. G.A. Kneeze, and A.V. Granato, Phys. Rev. B 25, 2851 (1982).

    Article  Google Scholar 

  44. M. Li, Z. Ding, Q. Meng, J. Zhou, Y. Zhu, H. Liu, M.S. Dresselhaus, and G. Chen, Nano Lett. 17, 1587 (2017).

    Article  Google Scholar 

  45. F.L. Madarasz, and P.G. Klemens, Phys. Rev. B 23, 2553 (1981).

    Article  Google Scholar 

  46. R.L. Sproull, M. Moss, and H. Weinstock, J. Appl. Phys. 30, 334 (1959).

    Article  Google Scholar 

  47. M. Moss, J. Appl. Phys. 37, 4168 (1966).

    Article  Google Scholar 

  48. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Cond. Matter 21, 395502 (2009).

    Article  Google Scholar 

  49. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  50. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  Google Scholar 

  51. W. Li, J. Carrete, N.A. Katcho, and N. Mingo, Comp. Phys. Commun. 185, 1747 (2014).

    Article  Google Scholar 

  52. A. Togo, L. Chaput, and I. Tanaka, Phys. Rev. B 91, 094306 (2015).

    Article  Google Scholar 

  53. J. Hirth and J. Lothe, Theory of Dislocations, 2nd edn. (Wiley, New York, 1982), pp 1–235.

    Google Scholar 

  54. R. Hanus, A. Garg, and G.J. Snyder, Commun. Phys. 1, 78 (2018).

    Article  Google Scholar 

  55. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, Hoboken, 1999), pp 20–30.

    MATH  Google Scholar 

  56. L. Lindsay and C. A. Polanco, book chapter in Handbook of Materials Modeling, Eds: W. Adreoni and S. Yip (Springer, Cham, Switzerland, 2020), pp. 735–765.

  57. J.R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Phys. Rev. B 75, 195121 (2007).

    Article  Google Scholar 

  58. P.B. Allen, Phil. Mag. B 70, 527 (1994).

    Article  Google Scholar 

  59. L. Lindsay, Phys. Rev. B 94, 174304 (2016).

    Article  Google Scholar 

  60. S. Tamura, Phys. Rev. B 30, 849 (1984).

    Article  Google Scholar 

  61. P.D. Thacher, Phys. Rev. 156, 975 (1967).

    Article  Google Scholar 

Download references

Acknowledgements

Calculations and manuscript development were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Lindsay.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindsay, L., Hanus, R. & Polanco, C.A. Dislocation-Limited Thermal Conductivity in LiF: Revisiting Perturbative Models. JOM 74, 547–555 (2022). https://doi.org/10.1007/s11837-021-05061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05061-7

Navigation