Skip to main content
Log in

An Investigation into the Influence of α–β Quartz Phase Transition on Banded Iron Ore Comminution

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The potential major role of the reversible α-to-β quartz phase transition in creating intergranular cracks along grain boundaries of hematite and quartz minerals of banded iron ore during the thermal pretreatment process has been investigated. Experiments were conducted to examine the thermal properties of banded iron ore with the aid of x-ray diffraction (XRD) analysis plus Rietveld analysis and differential scanning calorimetry (DSC). The DSC results showed that the α-to-β quartz phase transition is prominent in banded iron ore. Furthermore, XRD Rietveld analysis of banded iron ores after heat treatment at temperatures ranging from 28°C to 700°C confirmed the α-to-β quartz phase transition between 500°C and 600°C. Meanwhile, the (micro)structural parameters obtained from Rietveld analysis indicated that the phase transformation was accompanied by volume expansion of quartz mineral, corresponding to the generation of intergranular fracture combined with a noteworthy reduction in the strength of the ore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

taken from marked areas are shown inset in the respective figures).

Fig. 6

Similar content being viewed by others

References

  1. R.Z.A. Rashid, H.M. Salleh, M.H. Ani, N.A. Yunus, T. Akiyama, and H. Purwanto, Renew. Energy 63, 617. (2014).

    Article  Google Scholar 

  2. W. S. Association, World Steel Association: Brussels, Belgium, (2014)

  3. Y. Tian, Q. Zhu, and Y. Geng, Energy Policy 56, 352. (2013).

    Article  Google Scholar 

  4. M. Yellishetty, P. Ranjith, and A. Tharumarajah, Resour Conserv Recycl 54(12), 1084. (2010).

    Article  Google Scholar 

  5. V. Rayapudi and N. Dhawan, Min. Metall. Explor. 1, 507–513. (2020).

    Google Scholar 

  6. R. Srivastava and R. Prasad, Trans. Indian Inst. Metals 73(1), 215. (2020).

    Article  Google Scholar 

  7. A. Tripathy, S. Bagchi, D.S. Rao, B.K. Nayak, P.K. Rout, and S.K. Biswal, Metall. Res. Technol. 115(3), 302. (2018).

    Article  Google Scholar 

  8. S. Roy and A. Venkatesh, J. Earth Syst. Sci. 118(6), 619. (2009).

    Article  Google Scholar 

  9. J. Mukhopadhyay, J. Gutzmer, N. Beukes, and K.-I. Hayashi, Appl. Earth Sci. 117(4), 175. (2008).

    Article  Google Scholar 

  10. Y. Wang, H. Xu, E. Merino, and H. Konishi, Nat. Geosci. 2(11), 781. (2009).

    Article  Google Scholar 

  11. S. Sun and Y.-L. Li, Precambrian Res. 289, 1. (2017).

    Article  MathSciNet  Google Scholar 

  12. S. Rath, H. Sahoo, S. Das, B. Das, and B. Mishra, Int. J. Min. Process 130, 48. (2014).

    Article  Google Scholar 

  13. G. Sylvestre, N. Timoleon, K.N.G. Djibril, N.J. Paul, and N.F. Marianne, Chem. Erde-Geochem 75(3), 375. (2015).

    Article  Google Scholar 

  14. B. Das, B. Mishra, S. Prakash, S. Das, P. Reddy, and S. Angadi, Int. J. Min. Metall. Mater. 17(6), 675. (2010).

    Article  Google Scholar 

  15. S. Liu, Y. Zhao, W. Wang, and S. Wen, Min. Metall. Explor. 31(2), 136. (2014).

    Google Scholar 

  16. V. Rayapudi, S. Agrawal, and N. Dhawan, Min. Metall. Explor. 36(2), 327. (2019).

    Google Scholar 

  17. V. Deniz, S. Çayırlı, and Y. Umucu, Granul. Matter. 13(5), 623. (2011).

    Article  Google Scholar 

  18. D. Fuerstenau and A.-Z. Abouzeid, Int. J. Min. Process 67(1–4), 161. (2002).

    Article  Google Scholar 

  19. Y. Wang and E. Forssberg, China Particuol. 5(3), 193. (2007).

    Article  Google Scholar 

  20. A. Wikedzi, M. Arinanda, T. Leißner, U.A. Peuker, and T. Mütze, Min. Eng. 115, 33. (2018).

    Article  Google Scholar 

  21. R. Amankwah and G. Ofori-Sarpong, Min. Eng. 24(6), 541. (2011).

    Article  Google Scholar 

  22. V. Singh, P. Dixit, R. Venugopal, and K.B. Venkatesh, Min. Process Extract. Metall. Rev. 40(1), 1. (2019).

    Article  Google Scholar 

  23. A. Somani, T.K. Nandi, S.K. Pal, and A.K. Majumder, Int. J. Min. Sci. Technol. 27(2), 339. (2017).

    Article  Google Scholar 

  24. K. Fitzgibbon and T. Veasey, Min. Eng. 3(1–2), 181. (1990).

    Article  Google Scholar 

  25. V. Singh, R. Venugopal, P. Banerjee, and V. Saxena, Min. Metall. Explor. 31(4), 186. (2014).

    Google Scholar 

  26. V. Singh, R. Venugopal, S. Tripathy, and V. Saxena, Min. Metall. Process 34(2), 65. (2017).

    Google Scholar 

  27. Q. Sun, C. Lü, L. Cao, W. Li, J. Geng, and W. Zhang, Int. J. Rock Mech. Min. Sci. 85, 60. (2016).

    Article  Google Scholar 

  28. W.J. Rink and J.W. Thompson, Encyclopedia of Scientific Dating Methods (Springer, Berlin, 2015).

    Book  Google Scholar 

  29. W.L. Bragg and R.E. Gibbs, Proc. R Soc. Lond. A 109(751), 405. (1925).

    Article  Google Scholar 

  30. A. Wright and M. Lehmann, J. Solid State Chem. 36(3), 371. (1981).

    Article  Google Scholar 

  31. V. Swamy, S.K. Saxena, B. Sundman, and J. Zhang, J. Geophys. Res. Solid Earth 99(B6), 11787. (1994).

    Article  Google Scholar 

  32. M. Keith and O. Tuttle, Am. J. Sci. Bowen 203, 203–280. (1952).

    Google Scholar 

  33. O. Tuttle, Am. Minerol. 34(9–10), 723. (1949).

    Google Scholar 

  34. J. Pocock, T. Veasey, L. Tavares, and R. King, Powder Technol. 95(2), 137. (1998).

    Article  Google Scholar 

  35. W. Smykatz-Kloss and W. Klinke, J. Therm. Anal. Calorim. 48(1), 19. (1997).

    Article  Google Scholar 

  36. L.G. Austin, Powder Technol. 5(1), 1. (1971).

    Article  Google Scholar 

  37. V. Deniz, Part. Sci. Technol. 31(2), 101. (2013).

    Article  Google Scholar 

  38. B. Radhakrishna, Geol. Soc. Ind. Mem. 4, 1. (1983).

    Google Scholar 

  39. P. Murthy and A. Chatterjee, J. Geol. Soc. India 45, 19. (1995).

    Google Scholar 

  40. C. Manikyamba and S. Naqvi, Curr. Sci. 476, 476–479. (1996).

    Google Scholar 

  41. C. Manikyamba, V. Balaram, and S. Naqvi, Precambrian Res. 61(1–2), 137. (1993).

    Article  Google Scholar 

  42. C. Manikyamba and S. Naqvi, Precambrian Res. 72(1–2), 69. (1995).

    Article  Google Scholar 

  43. H. Rietveld, Acta Crystallogr. 22(1), 151. (1967).

    Article  Google Scholar 

  44. H. Rietveld, J. Appl. Crystallogr. 2(2), 65. (1969).

    Article  Google Scholar 

  45. F. Izumi, The Rietveld Method, ed. RA Young (Oxford University Press, Oxford, 1993).

    Google Scholar 

  46. S. Sain and S. Pradhan, Adv. Mag. Opt. Mater. 385, 385–423. (2016).

    Article  Google Scholar 

  47. M. Periyasamy, S. Sain, U. Sengupta, M. Mandal, S. Mukhopadhyay, and A. Kar, Mater. Adv. 2, 4843–4858. (2021).

    Article  Google Scholar 

  48. G. Maity, P. Maji, S. Sain, S. Das, T. Kar, and S. Pradhan, Phys. E: Low-Dim Syst. Nanostruct. 108, 411. (2019).

    Article  Google Scholar 

  49. A. Kar, S. Sain, D. Rossouw, B.R. Knappett, S.K. Pradhan, G.A. Botton, and A.E. Wheatley, J. Alloys Compd. 698, 944. (2017).

    Article  Google Scholar 

  50. L. Lutterotti, S. Matthies, and H. Wenk, IUCr 21, 14–15. (1999).

    Google Scholar 

  51. R.A. Young, The rietveld method. Int. Un Crystallogr. 5, 1–38. (1993).

    Google Scholar 

  52. G. Caglioti, A.T. Paoletti, and F. Ricci, Nucl. Intrum. 3(4), 223. (1958).

    Article  Google Scholar 

  53. G.M.D. Costa, V.G.D. Resende, and N.M. Toríbio, REM Revista Escola de Minas 55(4), 263. (2002).

    Article  Google Scholar 

  54. I. Manual, Issued by the Controller, Indian Bureau of Mines, 11 (1979)

  55. N.J. Beukes, J. Mukhopadhyay, and J. Gutzmer, Econ. Geol. 103(2), 365. (2008).

    Article  Google Scholar 

  56. H. Baioumy, M. Omran, and T. Fabritius, Ore. Geol. Rev. 80, 185. (2017).

    Article  Google Scholar 

  57. S. Ganguly, C. Manikyamba, A. Saha, M. Lingadevaru, M. Santosh, S. Rambabu, A.C. Khelen, D. Purushotham, and D. Linga, Ore. Geol. Rev. 73, 59. (2016).

    Article  Google Scholar 

  58. V. Menasinakai, and G. Pujar, Int. J. Mod. Eng. Res. 5(4), 14. (2015).

    Google Scholar 

  59. J.A. Adekoya, C.T. Okonkwo, and M.O. Adepoju, Int. J. Geosci. 3(05), 1074. (2012).

    Article  Google Scholar 

  60. N.S. Reddy and A. Sashidhar, Proc. Indian Acad. Sci. Earth Planet Sci. 98(2), 167. (1989).

    Article  Google Scholar 

  61. E. Görlich, Ceram. Int. 8(1), 3. (1982).

    Article  Google Scholar 

  62. I. Takashima, J. Jpn. Assoc. Miner. Pet. Econ. Geol. 69(2), 75. (1974).

    Article  Google Scholar 

  63. L.C. Prinsloo, E.M. van der Merwe, and L. Wadley, J. Therm. Anal. Calorim. 131(2), 1135. (2018).

    Article  Google Scholar 

  64. M. Ghiorso, I. Carmichael, and L. Moret, Contrib. Miner. Pet. 68(3), 307. (1979).

    Article  Google Scholar 

  65. G.T. Faust, Am. Minerol. 33(5–6), 337. (1948).

    Google Scholar 

  66. A. Jay, Proc. R Soc. Lond. A 142(846), 237. (1933).

    Article  Google Scholar 

  67. R. Ackermann and C.A. Sorrell, J. Appl. Crystallogr. 7(5), 461. (1974).

    Article  Google Scholar 

  68. Y. Le Page and G. Donnay, Acta Crystallogr. B 32(8), 2456. (1976).

    Article  Google Scholar 

  69. T. Huotari and I. Kukkonen, Posiva Oy Olkiluoto, Working Report 4, 62. (2004).

    Google Scholar 

  70. B. Wills and K. Atkinson, Min. Eng. 6(7), 697. (1993).

    Article  Google Scholar 

  71. L.M. Tavares and R.P. King, KONA Powder Part. J. 17, 163. (1999).

    Article  Google Scholar 

  72. P. Kumar, B. Sahoo, S. De, D. Kar, S. Chakraborty, and B. Meikap, J. Ind. Eng. Chem. 16(5), 805. (2010).

    Article  Google Scholar 

  73. B. Sahoo, S. De, and B. Meikap, Fuel Process Technol. 92(10), 1920. (2011).

    Article  Google Scholar 

  74. S. E. Kesler, Mineral supply and demand into the 21st century. In: Proceedings for a Workshop on Deposit Modeling, Mineral Resource Assessment, and their Role in Sustainable Development. US Geological Survey circular, (2007), Vol. 1294, pp 55

  75. S.K. Chaturvedi and S. Tripathi, Int. J. Manage IT Eng. 8(6), 36. (2018).

    Google Scholar 

  76. H. Sahoo, B. Kar, S.S. Rath, D.S. Rao, and B. Das, Powder Technol. 256, 285. (2014).

    Article  Google Scholar 

  77. S. Singh, H. Sahoo, S. Rath, B. Palei, and B. Das, J. Central S. Univ. 22(2), 437. (2015).

    Article  Google Scholar 

Download references

Acknowledgements

A.K. acknowledges support from the Department of Science and Technology (DST), Government of India through its INSPIRE Faculty Award Programme. A.K. also acknowledges support from the Royal Society’s Newton International Fellowship Follow-on Funding scheme. S.S. acknowledges an RA-II Fellowships Grant from IACS, Kolkata. The Ministry of Human Resource Development (MHRD), India financially supported the Ph.D. of M.P. We gratefully acknowledge NMDC Ltd (Donimalai iron ore mines) for their consent to work inside their permit territory and for logistical help during the field trip. We likewise express gratitude toward Dr. M. Sudarshan, UGC- DAE Consortium for Scientific Research, Kolkata Centre for his kind help with μ-XRF analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arik Kar.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 776 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Periyasamy, M., Sain, S., Mukhopadhyay, S. et al. An Investigation into the Influence of α–β Quartz Phase Transition on Banded Iron Ore Comminution. JOM 74, 222–233 (2022). https://doi.org/10.1007/s11837-021-05027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05027-9

Navigation