Skip to main content
Log in

Flow Accelerated Corrosion of Stainless Steel 316L by a Rotating Disk in Lead-Bismuth Eutectic Melt

  • Corrosion in Heavy Liquid Metals for Energy Systems
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Stainless steel 316L specimens were snug fitted into a rotating disk submerged in molten LBE and subjected to spatially varying local flow velocity along the radial position. The specimens experienced LBE flow velocity from 0.50 m/s to 3.14 m/s depending on their radial location. The test was conducted at 600°C with an oxygen concentration of 2.87 × 10−8 wt% for 150 h. Resulting microstructural characteristics of the corroded zone were found to be sensitively affected by local flow velocity and were categorized into four regimes. For linear disk velocity > 2.0 m/s, the affected zone thickness became increasingly less sensitive to flow velocity as the overall reaction became reaction rate controlled. At the velocity of ~ 3.0 m/s, erosion-corrosion started to take place. The flow effect on the affected zone thickness (\(l\)) agreed with the model based on the disk velocity (\(v\)) effect on the mass transfer of a rotating disk as \(\frac{1}{l}\sim v^{ - 0.792}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The experimental conditions of the presented study are as follows:

    T= 600°C. \(\omega =\) 41.89 rad/s. r = 12 (inner most location) – 75 (outer most location) mm.

    \(\nu = 0.00537 - 8.92 \times 10^{ - 6} T + 4.71 \times 10^{ - 9} T^{2} = 1.17 \times 10^{ - 3}\) (cm2/s at T = 873K)14 \(D_{Ni} = 1.7 \times 10^{ - 3} \exp \left( { - \frac{{3.63 \times 10^{4} }}{RT}} \right) = 1.14 \times 10^{ - 5}\) (cm2/s at T = 873K)30 \(Sc = \frac{\nu }{{D_{Ni} }} = 102.5\), \(Re_{\omega } = 5.16 \times 10^{4} - 2.01 \times 10^{6}\), respectively.

References

  1. S.E. Hirdaris, Y.F. Cheng, P. Shallcross, J. Bonafoux, D. Carlson, B. Prince, and G.A. Sarris, Ocean Eng. 79, 101. (2014).

    Article  Google Scholar 

  2. M. Salvatores and G. Palmiotti, Prog. Part. Nucl. Phys. 66, 144. (2011).

    Article  Google Scholar 

  3. C. Fazio, J. Van den Bosch, F. J. Martin Muñoz, J. Henry, F. Roelofs, P. Turroni, L. Mansani, A. Weisenburger, D. Gorse, J. Abella, L. Brissonneau, Y. Dai, L. Magielsen, J. Neuhausen, P. Vladimirov, A. Class, H. Jeanmart, A. Ciampichetti, G. Gerbeth, T. Wetzel1, A. Karbojian, K. Litfin, M. Tarantino, and L. Zanini, Technology and Components of Accelerator-driven Systems Workshop Proceedings, Karlsruhe, Germany, 15-17 March 2010 39, 82 (2011).

  4. M. Kondo, Y. Hishinuma, T. Norimatsu, and T. Muroga, Fusion Eng. Des. 136, 1581. (2018).

    Article  Google Scholar 

  5. L. Martinelli, K. Ginestar, V. Botton, C. Delisle, and F. Balbaud-Célérier, Corros. Sci. 176, 108897. (2020).

    Article  Google Scholar 

  6. E.P. Loewen, R.G. Ballinger, and J. Lim, Nucl. Technol. 147, 436. (2004).

    Article  Google Scholar 

  7. C. Park, T. Nozawa, R. Kasada, S. Tosti, S. Konishi, and H. Tanigawa, Fusion Eng. Des. 136, 623. (2018).

    Article  Google Scholar 

  8. G. Chen, N. Ju, Y. Lei, D. Wang, Q. Zhu, and T. Li, Prog. Nucl. Energy. 118, 103074. (2020).

    Article  Google Scholar 

  9. H. Jiang, W. Lu, W. Wang, Z. Chen, D. Chu, J. Han, Y. Huang, and Y. Wu, Fusion Eng. Des. 156, 111596. (2020).

    Article  Google Scholar 

  10. J. Lim, A. Mariën, K. Rosseel, A. Aerts, and J. Van den Bosch, J. Nucl. Mater. 429, 270. (2012).

    Article  Google Scholar 

  11. J. Lim, M. Gabriele, A. Marino, K. Gladinez, and A. Aerts, J. Electrochem. Soc. 164, H743. (2017).

    Article  Google Scholar 

  12. G. Liu, D. Tree, and M. High, Corrosion 50, 584. (1994).

    Article  Google Scholar 

  13. G. Grasso, C. Petrovich, K. Mikityuk, D. Mattioli, F. Manni and D. Gugiu, International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13) (2013).

  14. C. Fazio, V. Sobolev, A. Aerts, S. Gavrilov, K. Lambrinou, P. Schuurmans, A. Gessi, P. Agostini, A. Ciampichetti, L. Martinelli, S. Gosse, F. Balbaud-Celerier, J. L. Courouau, A. Terlain, N. Li, H. Glasbrenner, J. Neuhausen, S. Heinitz, L. Zanini, Y. Dai, M. Jolkkonen, Y. Kurata, T. Obara, N. Thiolliere, F. J. Martin-Munoz, A. Heinzel, A. Weisenburger, G. Mueller, G. Schumacher, A. Jianu, J. Pacio, L. Marocco, R. Stieglitz, T. Wetzel, M. Daubner, K. Litfin, J. B. Vogt, I. Proriol-Serre, D. Gorse, S. Eckert, F. Stefani, D. Buchenau, T. Wondrak, and I. S. Hwang, Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials compatibility, Thermal-hydraulics and Technologies - 2015 edition. (Nuclear Energy Agency of the OECD, 2015).

  15. M. Kondo, M. Takahashi, T. Suzuki, K. Ishikawa, K. Hata, S. Qiu, and H. Sekimoto, J. Nucl. Mater. 343, 349. (2005).

    Article  Google Scholar 

  16. A. Gessi, and G. Benamati, J. Nucl. Mater. 376, 269. (2008).

    Article  Google Scholar 

  17. A. Gessi, G. Benamati and M. Utili, Proceedings of the International Conference on EUROCORR (2008)

  18. A. Weisenburger, A. Heinzel, G. Müller, H. Muscher, and A. Rousanov, J. Nucl. Mater. 376, 274. (2008).

    Article  Google Scholar 

  19. M. Utili, M. Agostini, G. Coccoluto, and E. Lorenzini, Nucl. Eng. Des. 241, 1295. (2011).

    Article  Google Scholar 

  20. F.J. Martín-Muñoz, L. Soler-Crespo, and D. Gómez-Briceño, J. Nucl. Mater. 416, 87. (2011).

    Article  Google Scholar 

  21. F. Di Gabriele, S. Amore, C. Scaiola, E. Arato, D. Giuranno, R. Novakovic, and E. Ricci, Nucl. Eng. Des. 280, 69. (2014).

    Article  Google Scholar 

  22. C. Schroer, O. Wedemeyer, J. Novotny, A. Skrypnik, and J. Konys, Corros. Sci. 84, 113. (2014).

    Article  Google Scholar 

  23. A. Hojna, H. Hadraba, F. Di Gabriele, and R. Husak, Corros. Sci. 131, 264. (2018).

    Article  Google Scholar 

  24. T. Lapauw, B. Tunca, J. Joris, A. Jianu, R. Fetzer, A. Weisenburger, J. Vleugels, and K. Lambrinou, J. Nucl. Mater. 520, 258. (2019).

    Article  Google Scholar 

  25. C. Yao, Z. Wang, H. Zhang, H. Chang, Y. Sheng, T. Shen, Y. Zhu, L. Pang, M. Cui, K. Wei, J. Sun, T. Peng, C. Liu, and Z. Ma, J. Nucl. Mater. 523, 260. (2019).

    Article  Google Scholar 

  26. J. Zhang, and N. Li, J. Nucl. Mater. 373, 351. (2008).

    Article  Google Scholar 

  27. F. Balbaud-Célérier, and L. Martinelli, J. Eng. Gas Turbine. Power 132, 102912–102921. (2010).

    Article  Google Scholar 

  28. B.T. Ellison, and I. Cornet, J. Electrochem. Soc. 118, 68. (1971).

    Article  Google Scholar 

  29. Y. Gao, M. Takahashi, and M. Nomura, Mech. Eng. J. 2, 15–00149. (2015).

    Article  Google Scholar 

  30. E. Yamaki, K. Ginestar, and L. Martinelli, Corros. Sci. 53, 3075. (2011).

    Article  Google Scholar 

  31. J. Zhang, N. Li, Y. Chen, and A.E. Rusanov, J. Nucl. Mater. 336, 1. (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT: Ministry of Science and ICT) (no. 2019M2D1A1067209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youho Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Hwang, I. & Lee, Y. Flow Accelerated Corrosion of Stainless Steel 316L by a Rotating Disk in Lead-Bismuth Eutectic Melt. JOM 73, 4030–4040 (2021). https://doi.org/10.1007/s11837-021-04953-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04953-y

Navigation