Skip to main content

Advertisement

Log in

Quasi-Static Energy Absorption of Miura-Ori Metamaterials

  • Micro-architectured Materials by Additive Manufacturing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Analytical modeling is conducted to examine the quasistatic response of Miura-ori-based metamaterials under compression in two principal directions. For the \(x_{3}\) direction (out-of-plane) compression, the analytical results agree well with experiments and finite-element (FE) simulations. For compression in the \(x_{1}\) direction (in-plane), the analytical model can predict the initial force. Additionally, the strain-hardening effect of the cell wall material of Miura-ori metamaterial is also taken into consideration, and verified by the FE simulations. The ratio of the two forces corresponding to compression in the two respective directions is also obtained, offering a convenient way of assessing material properties. The energy absorption efficiency in different directions is compared. This study demonstrates that the performance of origami metamaterials can be tuned merely by changing the geometric parameters of the origami unit. The work should also provide theoretical guidance for designing metamaterials at small-scale unit cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Miura, Zeta-core sandwich- its concept and realization (University of Tokyo, Tokyo, 1972), pp 137–164.

    Google Scholar 

  2. L.J. Gibson, and M.F. Ashby, Cellular solids: structure and properties (Cambridge University Press, Cambridge, 1999), pp 1–3.

    Google Scholar 

  3. G. Lu, and T. Yu, Energy absorption of structures and materials (Woodhead Publishing Limited, Cambridge, 2003), pp 1–27.

    Book  Google Scholar 

  4. X. Xiang, G. Lu, and Z. You, Thin-Walled Struct. 157, 107130. (2020).

    Article  Google Scholar 

  5. J. Zhang, G. Lu, and Z. You, Composites, Part B 201, 108340. (2020).

    Article  Google Scholar 

  6. Z. Song, T. Ma, R. Tang, Q. Cheng, X. Wang, D. Krishnaraju, R. Panat, C.K. Chan, H. Yu, and H. Jiang, Nat. Commun. 5, 3140. (2014).

    Article  Google Scholar 

  7. J. Dai, and D. Caldwell, Trends Food Sci. Technol. 21, 153. (2010).

    Article  Google Scholar 

  8. G.B. Chai, and S. Zhu, Proc. Inst. Mech. Eng. Part L. 225, 207. (2011).

    Google Scholar 

  9. W. Wu, and Z. You, Proc. R. Soc. A 466, 2155. (2010).

    Article  Google Scholar 

  10. M. Schenk, and S.D. Guest, Proc. Natl. Acad. Sci. U. S. A. 110, 3276. (2013).

    Article  Google Scholar 

  11. Y. Chen, R. Peng, and Z. You, Science 349, 396. (2015).

    Article  Google Scholar 

  12. K. Miura and R.J. Lang, Origami 4, ed. R.J. Lang (US: CRC Press, 2009), p. 87

  13. J. Zhang, D. Karagiozova, Z. You, Y. Chen, and G. Lu, Int. J. Mech. Sci. 153, 194. (2019).

    Article  Google Scholar 

  14. D. Karagiozova, J. Zhang, G. Lu, and Z. You, Int. J. Impact Eng. 129, 80. (2019).

    Article  Google Scholar 

  15. J. Zhang, D. Karagiozova, G. Lu, and P. Chen, Thin-Walled Struct. 159, 107285. (2021).

    Article  Google Scholar 

  16. J. Ma, D. Hou, Y. Chen, and Z. You, Thin-Walled Struct. 100, 38. (2016).

    Article  Google Scholar 

  17. L. Yuan, H. Shi, J. Ma, and Z. You, Thin-Walled Struct. 141, 435. (2019).

    Article  Google Scholar 

  18. K. Yang, S. Xu, J. Shen, S. Zhou, and Y.M. Xie, Thin-Walled Struct. 103, 33. (2016).

    Article  Google Scholar 

  19. S. Ming, Z. Song, T. Li, K. Du, C. Zhou, and B. Wang, Mater. Des. 192, 108725. (2020).

    Article  Google Scholar 

  20. Y. Li, and Z. You, Int. J. Solids Struct. 169, 21. (2019).

    Article  MathSciNet  Google Scholar 

  21. A. Ajdari, H. Nayeb-Hashemi, and A. Vaziri, Int. J. Solids Struct. 48, 506. (2011).

    Article  Google Scholar 

  22. X. Zhou, H. Wang, and Z. You, Thin-Walled Struct. 82, 296. (2014).

    Article  Google Scholar 

  23. X. Xiang, Z. You, and G. Lu, Compos. Struct. 195, 359. (2018).

    Article  Google Scholar 

  24. J.M. Gattas, and Z. You, Int. J. Impact Eng. 73, 15. (2014).

    Article  Google Scholar 

  25. J. Gattas, and Z. You, Int. J. Solids Struct. 53, 80. (2015).

    Article  Google Scholar 

  26. C. Zhou, B. Wang, J. Ma, and Z. You, Int. J. Mech. Sci. 118, 1. (2016).

    Article  Google Scholar 

  27. A. Pydah, and R. Batra, Thin-Walled Struct. 115, 311. (2017).

    Article  Google Scholar 

  28. S. Fischer, Thin-Walled Struct. 90, 31. (2015).

    Article  Google Scholar 

  29. M. Schenk, S. Guest, and G. McShane, Int. J. Solids Struct. 51, 4196. (2014).

    Article  Google Scholar 

  30. S. Heimbs, J. Cichosz, M. Klaus, S. Kilchert, and A. Johnson, Compos. Struct. 92, 1485. (2010).

    Article  Google Scholar 

  31. J. Zhang, G. Lu, Y. Zhang, and Z. You, Int. J. Impact Eng. 156, 103925. (2021).

    Article  Google Scholar 

  32. X. Xiang, W. Qiang, B. Hou, P. Tran, and G. Lu, Thin-Walled Struct. 157, 106993. (2020).

    Article  Google Scholar 

  33. W.J. Stronge, and T. Yu, Dynamic models for structural plasticity (Springer, London, 2012), pp 2–28.

    Google Scholar 

  34. T. Yu, and L. Zhang, Plastic bending: theory and applications (World Scientific, Singapore, 1996), pp 11–20.

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the Australian Research Council for financial support through Discovery Grants (DP180102661) and the National Natural Science Foundation of China (Grant No. 11872125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxing Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Force-displacement curve in elastic stage

To evaluate the elastic response of Miura-ori materials under compression, it is assumed that the elastic deformation of cell walls is localized in a limited zone with bending along creases; the arc length of this region is nt (t is the wall thickness and n is usually within the range of 2~5). When the dihedral angle \(\theta\) reaches a certain value \(\theta_{el}\), the bending moment is assumed to be equal to the fully plastic bending moment. \(\theta_{el}\) can be obtained as 34:

$$ \theta_{el} = { }\theta_{0} + 3n\sigma_{Y} /E $$
(20)

The radius R of this zone and its relationship with bending moment can be approximately expressed as:

$$ R = \frac{nt}{{\theta_{el} - \theta_{0} }} $$
(21)
$$ M_{el} = \frac{EI}{R} $$
(22)

where I is the second moment of inertia of the cross-section. Therefore, the elastic response can be determined.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiang, W., Zhang, J., Karagiozova, D. et al. Quasi-Static Energy Absorption of Miura-Ori Metamaterials. JOM 73, 4177–4187 (2021). https://doi.org/10.1007/s11837-021-04939-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04939-w

Navigation