Skip to main content
Log in

Application of Serial Sectioning to Evaluate the Performance of x-ray Computed Tomography for Quantitative Porosity Measurements in Additively Manufactured Metals

  • Advances in Multi-modal Characterization of Structural Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study presents a correlative characterization of internal porosity within a Ti-6Al-4V (Ti64) additively manufactured sample. An x-ray computed tomography (XCT) reconstruction is compared to a mechanical polishing-based serial sectioning (SS) reconstruction over the same volumetric region. A 10-mm-diameter cylindrical additive manufactured sample was examined in this study, which was manufactured by laser powder bed fusion out of Ti64 virgin powder. Microfocus XCT imaging was conducted to characterize the internal porosity within the sample, at a voxel resolution of approximately 23 µm. After XCT imaging, a custom SS system was employed for optical microscopy characterization at a much finer spatial resolution—approximately 22 times—compared to the XCT reconstruction. The SS data were correlated with the XCT images of the sample. The methods used for segmentation of each data volume are discussed. The quantitative results of stereology, area fraction of porosity, and equivalent pore diameters are presented. The comparative results for manual data registration are also presented, as well as the future direction of research resulting from this current study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.H. Khajavi, J. Partanen, and J. Holmström, Comput. Ind. 65(1), 50. (2014).

    Article  Google Scholar 

  2. E07 Committee, ASTM Int., E2736-17.

  3. S. Romano, P.D. Nezhadfar, N. Shamsaei, M. Seifi, and S. Beretta, Theor. Appl. Fract. Mech. 106, 102477. (2020).

    Article  Google Scholar 

  4. G. Desbois, J.L. Urai, P.A. Kukla, J. Konstanty, and C. Baerle, J. Pet. Sci. Eng. 78(2), 243. (2011).

    Article  Google Scholar 

  5. J. Alkemper, and P.W. Voorhees, J. Microsc. 201(3), 388. (2001).

    Article  MathSciNet  Google Scholar 

  6. S.M. Wallentine, and M.D. Uchic, AIP Conf. Proc. 1949(1), 120002. (2018).

    Article  Google Scholar 

  7. M.D. Uchic, M.A. Groeber, and A.D. Rollett, JOM 63(3), 25. (2011).

    Article  Google Scholar 

  8. M. Uchic et al., Proc. 1st Int. Conf. on 3D Materials Science, 2012, p. 195–202.

  9. T. Stan, Z.T. Thompson, and P.W. Voorhees, Mater. Charact. 160, 110119. (2020).

    Article  Google Scholar 

  10. T. Wei, W. Fan, N. Yu, and Y. Wei, Eng. Geol. 261, 105265. (2019).

    Article  Google Scholar 

  11. S. Sun, M. Brandt, and M. Easton, in Laser Additive Manufacturing. ed. by M. Brandt (Woodhead, Cambridge, 2017), p. 55.

    Chapter  Google Scholar 

  12. R. Singh, et al., Mater. Today Proc. 26, 3058. (2020).

    Article  Google Scholar 

  13. S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Acta Mater. 108, 36. (2016).

    Article  Google Scholar 

  14. T. Vilaro, C. Colin, and J.-D. Bartout, Metall. Mater. Trans. A 42(10), 3190. (2011).

    Article  Google Scholar 

  15. M.A. Groeber, E. Schwalbach, S. Donegan, K. Chaput, T. Butler, and J. Miller, IOP Conf. Ser. Mater. Sci. Eng. 219, 012002. (2017).

    Article  Google Scholar 

  16. M.R. Louthan, ASM Handb. 10, 299. (1986).

    Google Scholar 

  17. S. Ganti, et al., Mater. Charact. 138, 11. (2018).

    Article  Google Scholar 

  18. S. Preibisch, S. Saalfeld, and P. Tomancak, Bioinformatics 25(11), 1463. (2009).

    Article  Google Scholar 

  19. J. Schindelin et al., Nat. Methods, 9(7), Art.7 (2012).

  20. J.C. Russ, and R.T. Dehoff, Practical Stereology (Springer, New York, 2012).

    Google Scholar 

  21. R.T. DeHoff, and F.N. Rhines, Quantitative Microscopy (McGraw-Hill, New York, 1968).

    Google Scholar 

  22. A. Baddeley, and E.B.V. Jensen, Stereology for Statisticians (CRC Press, Boca Raton, 2004).

    Book  Google Scholar 

  23. M.A. Groeber, and M.A. Jackson, Integrating Mater. Manuf. Innov. 3(1), 5. (2014).

    Google Scholar 

  24. I. Arganda-Carreras, et al., Bioinformatics 33(15), 2424. (2017).

    Article  Google Scholar 

  25. R.P. Woods, S.R. Cherry, and J.C. Mazziotta, J. Comput. Assist. Tomogr. 16(4), 620. (1992).

    Article  Google Scholar 

  26. N.M. Alpert, J.F. Bradshaw, D. Kennedy, and J.A. Correia, J. Nucl. Med. 31(10), 1717. (1990).

    Google Scholar 

  27. D.L. Collins, P. Neelin, T.M. Peters, and A.C. Evans, J. Comput. Assist. Tomogr. 18(2), 192. (1994).

    Article  Google Scholar 

  28. N. Otsu, IEEE Trans. Syst. Man Cybern. 9(1), 62. (1979).

    Article  MathSciNet  Google Scholar 

  29. J. Ahrens, B. Geveci, and C. Law, Vis. Handb., 717 (2005).

  30. P. Iassonov, T. Gebrenegus, and M. Tuller, Water Resour. Res., 45(9) (2009).

Download references

Acknowledgements

All the authors acknowledge support from the Air Force Research Laboratory. M.C. acknowledges support from the Air Force Research Laboratory through contract FA8650-19-F-5205. The authors acknowledge the efforts of Dave Roberts of AFRL in collecting the XCT data used for this study. The authors also acknowledge the contribution of Sean Donegan of AFRL for DREAM.3D workflow development and discussions regarding spatial registration methods. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryce R. Jolley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jolley, B.R., Uchic, M.D., Sparkman, D. et al. Application of Serial Sectioning to Evaluate the Performance of x-ray Computed Tomography for Quantitative Porosity Measurements in Additively Manufactured Metals. JOM 73, 3230–3239 (2021). https://doi.org/10.1007/s11837-021-04863-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04863-z

Navigation