Skip to main content
Log in

Influence of Reducing Gas Injection Methods on Pulverized Coal Combustion in a Medium Oxygen-Enriched Blast Furnace

  • Computational Modeling in Pyrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Medium oxygen-enriched blast furnaces that utilize reducing gas injections are a feasible new ironmaking process that can significantly reduce the coke ratio and carbon dioxide emissions. To better inject the reducing gas into the blast furnace, two injection methods were designed in this study, and the effects of the reducing gas on the combustion of pulverized coal in three types of medium oxygen-enriched processes were studied using a three-dimensional lance-blowpipe-tuyere-raceway model. The reducing gas was injected into the blowpipe from a sleeve spray lance, which was suitable for injecting a small amount of reducing gas. The optimal coal burnout was 6% higher than that of a traditional blast furnace (TBF). The reducing gas was also directly injected into the raceway from a spray lance, which was suitable for injecting a large amount of reducing gas. The optimal coal burnout was 13% higher than that of a TBF using this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Fan, and S.J. Friedmann, Joule 5, 1. (2021).

    Article  Google Scholar 

  2. S. Kuang, Z. Li, and A. Yu, Steel Res. Int. 89, 1. (2018).

    Article  Google Scholar 

  3. F.M. Shen, B. Sundelin, K. Paulsson, E. Kapilashrami, G. Wei, M.S. Chu, and Y.S. Shen, Steel Res. Int. 79, 11. (2008).

    Article  Google Scholar 

  4. D. Wu, P. Zhou, and C.Q. Zhou, Appl. Energy 250, 1686. (2019).

    Article  Google Scholar 

  5. D. Gielen, and Y. Moriguchi, Energy Policy 30, 849. (2002).

    Article  Google Scholar 

  6. L. Price, J. Sinton, E. Worrell, D. Phylipsen, H.X. Lian, and L. Ji, Energy 27, 429. (2002).

    Article  Google Scholar 

  7. H. Nogami, J.I. Yagi, S.Y. Kitamura, and P.R. Austin, ISIJ Int. 46, 1759. (2006).

    Article  Google Scholar 

  8. M. Jampani, J. Gibson, and P.C. Pistorius, Metall. Mater. Trans. B 50, 1290. (2019).

    Article  Google Scholar 

  9. C. Yilmaz, J. Wendelstorf, and T. Turek, J. Clean. Prod. 154, 488. (2017).

    Article  Google Scholar 

  10. J. Tang, M. Chu, F. Li, Z. Zhang, Y. Tang, Z. Liu, and J. Yagi, J. Clean. Prod. 278, 123191. (2021).

    Article  Google Scholar 

  11. P. Jin, Z. Jiang, C. Bao, S. Hao, and X. Zhang, Resour. Conserv. Recycl. 117, 58. (2017).

    Article  Google Scholar 

  12. W. Zhang, Z. Xue, J. Zhang, W. Wang, C. Cheng, and Z. Zou, J. Iron Steel Res. Int. 24, 778. (2017).

    Article  Google Scholar 

  13. W.P. Hutny, J.K. Lee, and J.T. Price, Prog. Energy Combust. Sci. 17, 373. (1991).

    Article  Google Scholar 

  14. A. Babich, D. Senk, and S. Born, ISIJ Int. 54, 2704. (2014).

    Article  Google Scholar 

  15. Z. Zhou, Q. Xue, H. Tang, G. Wang, and J. Wang, JOM 69, 1790. (2017).

    Article  Google Scholar 

  16. A. Majeski, A. Runstedtler, J. D’Alessio, and N. Macfadyen, ISIJ Int. 55, 1377. (2015).

    Article  Google Scholar 

  17. A. Murao, K. Fukada, M. Sato, H. Matsuno, Y. Saito, S. Akaotsu, Y. Matsushita, and H. Aoki, ISIJ Int. 59, 2165. (2019).

    Article  Google Scholar 

  18. T. Okosun, S. Nielson, J. D’Alessio, S. Ray, S. Street, and C. Zhou, Processes 8, 771. (2020).

    Article  Google Scholar 

  19. W. Zhang, J. Dai, C. Li, X. Yu, Z. Xue, and H. Saxén, Steel Res. Int. 92, 1. (2021).

    Google Scholar 

  20. Y. Shen, B. Guo, A. Yu, D. Maldonado, P. Austin, and P. Zulli, ISIJ Int. 48, 777. (2008).

    Article  Google Scholar 

  21. Y.S. Shen, and A.B. Yu, Miner. Eng. 90, 89. (2016).

    Article  Google Scholar 

  22. Y. Zhuo, and Y. Shen, Appl. Energy 261, 114456. (2020).

    Article  Google Scholar 

  23. C. Yeh, (National Cheng Kung University, Taiwan, China 2012)

  24. Y. Shen, A. Yu, P. Austin, and P. Zulli, Miner. Eng 33, 54. (2012).

    Article  Google Scholar 

  25. Z. Zhou, Q. Xue, C. Li, G. Wang, X. She, and J. Wang, Appl. Therm. Eng. 123, 1096. (2017).

    Article  Google Scholar 

  26. S.K. Ubhayakar, D.B. Stickler, C.W. Von Rosenberg, and R.E. Gannon, Symp. Combust. 16, 427. (1977).

    Article  Google Scholar 

  27. B.F. Magnussen, and B.H. Hjertager, Symp. Combust. 16, 719. (1977).

    Article  Google Scholar 

  28. A.T. Wijayanta, M.S. Alam, K. Nakaso, J. Fukai, K. Kunitomo, and M. Shimizu, Fuel Process. Technol. 117, 53. (2014).

    Article  Google Scholar 

  29. A.T. Wijayanta, M.S. Alam, K. Nakaso, J. Fukai, K. Kunitomo, and M. Shimizu, ISIJ Int. 54, 1521. (2014).

    Article  Google Scholar 

  30. X. She, X. An, J. Wang, Q. Xue, and L. Kong, J. Iron Steel Res. Int. 24, 608. (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. U1960205) and State Key Laboratory of Advanced Metallurgy (No. 41618029), University of Science and Technology Beijing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingsong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Wang, J., Li, C. et al. Influence of Reducing Gas Injection Methods on Pulverized Coal Combustion in a Medium Oxygen-Enriched Blast Furnace. JOM 73, 2929–2937 (2021). https://doi.org/10.1007/s11837-021-04812-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04812-w

Navigation