Skip to main content
Log in

Site Occupation and Structural Phase Transformation of the (010) Antiphase Boundary in Boron-Modified L12 Ni3Al

  • Defect and Phase Transformation Pathway Engineering for Desired Microstructures
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The site occupancy of boron (B) in L12 γ′-Ni3Al and its (010) antiphase boundary (APB) are studied by first-principles calculations in the present work. Based on the electronic structures of the (010) APB, 12 initial tetrahedral sites for B are identified and reduced to 6 distinct configurations due to symmetry, which are transformed into 4 octahedral sites presented by the atomic trajectories during relaxations in first-principles calculations. It is revealed that B atoms prefer to occupy a site far away from the fault layers within the (010) APB of γ′-Ni3Al, agreeing well with previous experimental observations. Bonding charge density is utilized to provide a novel insight into the local L12 → D022 structural phase transformation of the APB and the corresponding tetrahedral-octahedral transition. The energetic site occupation of B is dominated by the lower electron density of the octahedral sites than that of tetrahedral sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.

Similar content being viewed by others

References

  1. T. Meiners, T. Frolov, R.E. Rudd, G. Dehm, and C.H. Liebscher, Nature 579, 375 (2020).

    Article  Google Scholar 

  2. T. Yang, Y.L. Zhao, W.P. Li, C.Y. Yu, J.H. Luan, D.Y. Lin, L. Fan, Z.B. Jiao, W.H. Liu, X.J. Liu, J.J. Kai, J.C. Huang, and C.T. Liu, Science 369, 427 (2020).

    Article  Google Scholar 

  3. M. Wagih, P.M. Larsen, and C.A. Schuh, Nat. Commun. 11, 6376 (2020).

    Article  Google Scholar 

  4. M.P. Harmer, Science 332, 182 (2011).

    Article  Google Scholar 

  5. D. Raabe, M. Herbig, S. Sandlobes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, and P.P. Choi, Curr. Opin. Solid State Mater. Sci. 18, 253 (2014).

    Article  Google Scholar 

  6. W.Y. Wang, B. Tang, S.-L. Shang, J. Wang, S. Li, Y. Wang, J. Zhu, S. Wei, J. Wang, K.A. Darling, S.N. Mathaudhu, Y. Wang, Y. Ren, X.D. Hui, L.J. Kecskes, J. Li, and Z.-K. Liu, Acta Mater. 170, 231 (2019).

    Article  Google Scholar 

  7. Y. Zhang, J. Li, W.Y. Wang, P. Li, B. Tang, J. Wang, H. Kou, S. Shang, Y. Wang, L.J. Kecskes, X. Hui, Q. Feng, and Z.-K. Liu, J. Mater. Sci. 54, 13609 (2019).

    Article  Google Scholar 

  8. W.Y. Wang, F. Xue, Y. Zhang, S.-L. Shang, Y. Wang, K.A. Darling, L.J. Kecskes, J. Li, X. Hui, Q. Feng, and Z.-K. Liu, Acta Mater. 145, 30 (2018).

    Article  Google Scholar 

  9. T. Frolov, D.L. Olmsted, M. Asta, and Y. Mishin, Nat. Commun. 4, 1899 (2013).

    Article  Google Scholar 

  10. K. Chen, D.J. Srolovitz, and J. Han, Proc. Natl. Acad. Sci. 117, 33077 (2020).

    Article  Google Scholar 

  11. M.S. Titus, A. Mottura, G. Babu Viswanathan, A. Suzuki, M.J. Mills, and T.M. Pollock, Acta Mater. 89, 423 (2015).

    Article  Google Scholar 

  12. E.W. Hart, Scr. Mater. 2, 179 (1968).

    Google Scholar 

  13. J.H. Perepezko, Science 326, 1068 (2009).

    Article  Google Scholar 

  14. X.B. Hu, Y.L. Zhu, and X.L. Ma, Acta Mater. 68, 70 (2014).

    Article  Google Scholar 

  15. L. Kovarik, R.R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang, and M.J. Mills, Prog. Mater. Sci. 54, 839 (2009).

    Article  Google Scholar 

  16. T. Wang, G. Sheng, Z.-K. Liu, and L.-Q. Chen, Acta Mater. 56, 5544 (2008).

    Article  Google Scholar 

  17. C.Y. Cui, Y.F. Gu, Y. Yuan, T. Osada, and H. Harada, Mater. Sci. Eng. A 528, 5465 (2011).

    Article  Google Scholar 

  18. Y. Gu, H. Harada, C. Cui, D. Ping, A. Sato, and J. Fujioka, Scr. Mater. 55, 815 (2006).

    Article  Google Scholar 

  19. K. Shinagawa, T. Omori, K. Oikawa, R. Kainuma, and K. Ishida, Scr. Mater. 61, 612 (2009).

    Article  Google Scholar 

  20. V.R. Manga, S.-L. Shang, W.Y. Wang, Y. Wang, J. Liang, V.H. Crespi, and Z.-K. Liu, Acta Mater. 82, 287 (2015).

    Article  Google Scholar 

  21. W. Yan, I.P. Jones, and R.E. Smallman, Phys. Status Solidi A 125, 469 (1991).

    Article  Google Scholar 

  22. E.R. Cutler, A.J. Wasson, and G.E. Fuchs, J. Cryst. Growth 311, 3753 (2009).

    Article  Google Scholar 

  23. Y.S. Zhao, J. Zhang, Y.S. Luo, B. Zhang, G. Sha, L.F. Li, D.Z. Tang, and Q. Feng, Acta Mater. 176, 109(2020).

    Article  Google Scholar 

  24. Y. Zhao, J. Zhang, F. Song, M. Zhang, Y. Luo, H. Zhao, and D. Tang, Prog. Nat. Sci.-Mater. Int. 30, 371 (2020).

    Article  Google Scholar 

  25. Y.S. Zhao, C.G. Liu, Y.Y. Guo, Y.F. Liu, J. Zhang, Y.S. Luo, and D.Z. Tang, Prog. Nat. Sci.-Mater. Int. 28, 483 (2018).

    Article  Google Scholar 

  26. Q. Hu, L. Liu, X.-B. Zhao, S.-F. Gao, J. Zhang, and H.-Z. Fu, Trans. Nonferr. Metal. Soc. 23, 3257 (2013).

    Article  Google Scholar 

  27. C.T. Liu, C.L. White, and J.A. Horton, Acta Metall. 33, 213 (1985).

    Article  Google Scholar 

  28. X.L. Ma and X.B. Hu, Acta Metall. Sin. 54, 1503 (2018).

    Google Scholar 

  29. K.J. Hemker and M.J. Mills, Philos. Mag. A 68, 305 (1993).

    Article  Google Scholar 

  30. R.C. Reed and C.M.F. Rae, Chapter 22—Physical Metallurgy of the Nickel-Based Superalloys, in Physical Metallurgy, 5th edn. ed. by D.E. Laughlin and K. Hono (Elsevier, Oxford, 2014), pp. 2215–2290.

    Chapter  Google Scholar 

  31. V. Paidar, D.P. Pope, and V. Vitek, Acta Metall. 32, 435 (1984).

    Article  Google Scholar 

  32. X.-X. Yu and C.-Y. Wang, Mater. Sci. Eng. A 539, 38 (2014).

    Article  Google Scholar 

  33. S.L. Shang, W.Y. Wang, Y. Wang, Y. Du, J.X. Zhang, A.D. Patel, and Z.K. Liu, J. Phys. Condes. Matter 24, 155402 (2012).

    Article  Google Scholar 

  34. S.L. Shang, D.E. Kim, C.L. Zacherl, Y. Wang, Y. Du, and Z.K. Liu, J. Appl. Phys. 112, 053515 (2012).

    Article  Google Scholar 

  35. M. Vsianska and M. Sob, Prog. Mater. Sci. 56, 817 (2011).

    Article  Google Scholar 

  36. C.L. Zacherl, S.L. Shang, D.E. Kim, Y. Wang, and Z.K. Liu, Effects of Alloying Elements on Elastic, Stacking Fault, and Diffusion Properties of Fcc Ni from First-Principles: Implications for Tailoring the Creep Rate of Ni-Base Superalloys, in Superalloys 2012. ed. by E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, and J. Telesman (Wiley, New York, 2012), pp. 455–461.

    Chapter  Google Scholar 

  37. Z. Guo, A.P. Miodownik, N. Saunders, and J.P. Schille, Scr. Mater. 54, 2175 (2006).

    Article  Google Scholar 

  38. Y.S. Zhao, J. Zhang, Y.S. Luo, B. Zhang, G. Sha, L.F. Li, D.Z. Tang, and Q. Feng, Acta Mater. 176, 109 (2019).

    Article  Google Scholar 

  39. P.J. Bocchini, C.K. Sudbrack, R.D. Noebe, D.C. Dunand, and D.N. Seidman, Mater. Sci. Eng. A 682, 260 (2017).

    Article  Google Scholar 

  40. M. Kolb, L.P. Freund, F. Fischer, I. Povstugar, S.K. Makineni, B. Gault, D. Raabe, J. Muller, E. Spiecker, S. Neumeier, and M. Goken, Acta Mater. 145, 247 (2018).

    Article  Google Scholar 

  41. V.I. Razumovskiy, A.Y. Lozovoi, and I.M. Razumovskii, Acta Mater. 82, 369 (2015).

    Article  Google Scholar 

  42. P. Kontis, H.A.M. Yusof, S. Pedrazzini, M. Danaie, K.L. Moore, P.A.J. Bagot, M.P. Moody, C.R.M. Grovenor, and R.C. Reed, Acta Mater. 103, 688 (2016).

    Article  Google Scholar 

  43. Y.M. Eggeler, M.S. Titus, A. Suzuki, and T.M. Pollock, Acta Mater. 77, 352 (2014).

    Article  Google Scholar 

  44. V.R. Manga, J.E. Saal, Y. Wang, V.H. Crespi, and Z.-K. Liu, J. Appl. Phys. 108, 103509 (2010).

    Article  Google Scholar 

  45. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  46. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  47. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  48. Y. Wang and J.P. Perdew, Phys. Rev. B 44, 13298 (1991).

    Article  Google Scholar 

  49. M. Methfessel and A.T. Paxton, Phys. Rev. B 40, 3616 (1989).

    Article  Google Scholar 

  50. P.E. Blöchl, O. Jepsen, and O.K. Andersen, Phys. Rev. B 49, 16223 (1994).

    Article  Google Scholar 

  51. S.L. Shang, W.Y. Wang, B.C. Zhou, Y. Wang, K.A. Darling, L.J. Kecskes, S.N. Mathaudhu, and Z.K. Liu, Acta Mater. 67, 168 (2014).

    Article  Google Scholar 

  52. S. Yang, B. Kiraly, W.Y. Wang, S. Shang, B. Cao, H. Zeng, Y. Zhao, W. Li, Z.-K. Liu, W. Cai, and T.J. Huang, Adv. Mater. 24, 5598 (2012).

    Article  Google Scholar 

  53. P.N.H. Nakashima, A.E. Smith, J. Etheridge, and B.C. Muddle, Science 331, 1583 (2011).

    Article  Google Scholar 

  54. C. Zou, J. Li, W.Y. Wang, Y. Zhang, D. Lin, R. Yuan, X. Wang, B. Tang, J. Wang, X. Gao, H. Kou, X. Hui, X. Zeng, M. Qian, H. Song, Z.-K. Liu, and D. Xu, Acta Mater. 202, 211 (2021).

    Article  Google Scholar 

  55. W.Y. Wang, C. Zou, D. Lin, J. Tang, L. Zhang, J. Sun, Q. Guan, B. Tang, J. Wang, H. Kou, J. Gao, H. Song, J. Ma, and J. Li, Comput. Mater. Sci. 163, 241 (2019).

    Article  Google Scholar 

  56. K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008).

    Article  Google Scholar 

  57. K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

    Article  Google Scholar 

  58. F. Birch, Phys. Rev. 71, 809 (1947).

    Article  Google Scholar 

  59. F. Birch, J. Geophys. Res. 83, 1257 (1978).

    Article  Google Scholar 

  60. S.L. Shang, A. Saengdeejing, Z.G. Mei, D.E. Kim, H. Zhang, S. Ganeshan, Y. Wang, and Z.K. Liu, Comput. Mater. Sci. 48, 813 (2010).

    Article  Google Scholar 

  61. T.W. Fan, Q. Zhang, B.Y. Tang, L.M. Peng, and W.J. Ding, Eur. Phys. J. B 82, 143 (2011).

    Article  Google Scholar 

  62. W.Y. Wang, S.L. Shang, Y. Wang, K.A. Darling, L.J. Kecskes, S.N. Mathaudhu, X.D. Hui, and Z.-K. Liu, J. Alloys Compd. 586, 656 (2014).

    Article  Google Scholar 

  63. M.H. Yoo and C.L. Fu, Mater. Sci. Eng. A 153, 470 (1992).

    Article  Google Scholar 

  64. W.Y. Wang, S.L. Shang, Y. Wang, K.A. Darling, S.N. Mathaudhu, X.D. Hui, and Z.K. Liu, Chem. Phys. Lett. 551, 121 (2012).

    Article  Google Scholar 

  65. Y. Wang, Z.K. Liu, and L.Q. Chen, Acta Mater. 52, 2665 (2004).

    Article  Google Scholar 

  66. S.L. Shang, Y. Wang, D. Kim, and Z.K. Liu, Comp. Mater. Sci. 47, 1040 (2010).

    Article  Google Scholar 

  67. P. Veyssiere, J. Douin, and P. Beauchamp, Philos. Mag. A 51, 469 (1985).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51690163), National Major Science and Technology Project (2017-VI-0014-0086), and the National Science Foundation (grant no. DMR-1006557). W.Y. Wang gratefully acknowledges Dr. Venkateswara R. Manga for fruitful discussions. First-principles calculations were carried out on the clusters at Northwestern Polytechnical University and the LION clusters at the Pennsylvania State University supported by the Materials Simulation Center and the Research Computing and Cyberinfrastructure Unit at the Pennsylvania State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William Yi Wang, Jinshan Li or Zi-Kui Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 747 KB)

Supplementary file2 (RAR 792 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W.Y., Zhao, T., Zou, C. et al. Site Occupation and Structural Phase Transformation of the (010) Antiphase Boundary in Boron-Modified L12 Ni3Al. JOM 73, 2285–2292 (2021). https://doi.org/10.1007/s11837-021-04740-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04740-9

Navigation