Skip to main content
Log in

Recent Studies in Mechanical Properties of Selected Hard-Shelled Seeds: A Review

  • Multiscale Experiments and Modeling in Biomaterials and Biological Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Seeds and nuts not only serve as important food sources for human beings but also exhibit excellent mechanical properties resulting from their extraordinary shell structures. A literature review has been performed on selected hard-shelled seeds, including almond, brazil nut, chestnut, hazelnut, macadamia, pecan, pistachio, and walnut, for their geometrical, mechanical, and microstructural properties of their shells and kernels. It was found that these properties vary between different cultivars and moisture contents. Ashby charts have been created to compare the geometries and rupture energy from different shells and kernels. The results could provide initial hints for the creation of bio-inspired composites as well as the development of equipment to produce high-quality products of hard-shelled seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. USDA, Tree nuts: World Markets and Trade. https://usda.library.cornell.edu/concern/publications/tm70mv16z?locale=en. Accessed 14, December 2020.

  2. S. Koplan, D.T. Okun, L. Bragg, M.E. Miller, J.A. Hillman, and T.J. Askey, USITC Publication 3352 (Industry Trade Summary, Edible Nuts, 2000).

    Google Scholar 

  3. International Nut and Dried Fruit Council Foundation (INC). Nuts & Dried Fruits Statistical Yearbook 2019/2020. https://www.nutfruit.org/files/tech/1587539172_INC_Statistical_Yearbook_2019-2020.pdf Accessed 24, December 2020

  4. M.L. Dreher, C.V. Maher, and P. Kearney, Nutr. Rev. 54(8), 241. (1996).

    Google Scholar 

  5. S. Raatz, “Go Nuts!” (USDA, last updated 8/13/2016). https://www.ars.usda.gov/plains-area/gfnd/gfhnrc/docs/news-2013/go-nuts/. Accessed 13 December 2020.

  6. J. Sabate, E. Ros, and J. Salas-Salvado, Br. J. Nutr. 96, S1–S2. (2006).

    Google Scholar 

  7. C. Alasalvar, and F. Shahidi, Tree Nuts: Composition, Phytochemicals, and health effects, 1st edn. (CRC, Boca Raton, FL, 2008), p 37.

    Google Scholar 

  8. J. Peter Clark, “Processing Tree Nuts. https://www.ift.org/news-and-publications/food-technology-magazine/issues/2002/june/columns/processing. Accessed 24, December 2020.

  9. C.T. Young, Kirk-Othmer Encycl. Chem. Technol., 3rd Ed., 16, 248 (2000).

  10. C. Aydin, J. Food Eng. 60, 315. (2003).

    Google Scholar 

  11. S.M.A. Razavi, B. Emadzadeh, A. Rafe, and A.M. Amini, J. Food Eng. 81, 209. (2007).

    Google Scholar 

  12. M.O. Sunmonu, M.O. Iyanda, M.M. Odewole, and A.N. Moshood, Niger. J. Technol. Dev. 12(1), 22. (2015).

    Google Scholar 

  13. S. Marey, A.M. Drees, M.M. Ibrahim, and M.A. Aboegela, Agric .Eng Int. CIGR J. 19(4), 133. (2017).

    Google Scholar 

  14. M.E. Kleine, and D.E. Guyer, Appl. Eng. Agric. 29(6), 823. (2013).

    Google Scholar 

  15. N. N. Mohsenin, Physical Properties of Plant and Animal Materials, Structure, physical characteristics and mechanical properties, 1st ed. (New York: Gordon & Breach, 1978), pp 3, pp 58-87.

  16. S. Arslan, and K.K. Vursavus, Philipp. Agric. Sci. 91(2), 171. (2008).

    Google Scholar 

  17. S. Pliestic, N. Dobricevic, D. Filipovic, and Z. Gospodaric, Trans. ASABE 51(2), 653. (2008).

    Google Scholar 

  18. E. Altuntas, R. Gercekcioglu, and C. Kaya, Int. J. Food Prop. 13, 282. (2010).

    Google Scholar 

  19. A.M. Kluczkovski, M. Martins, S.M. Mundim, R.H. Simoes, K.S. Nascimento, H.A. Marinho, and A. Kluczkovski Jr., Afr. J. Biotechnol. 14(8), 642. (2015).

    Google Scholar 

  20. R.M. Nogueira, V.D.S. Alvares, S. Ruffato, R.P. Lopes, and J.D.S. Esilva, Eng. Agric. Jaboticabal 34(5), 963. (2014).

    Google Scholar 

  21. M.U. Yildiz, M.M. Ozcan, S. Calisir, F. Demir, and F. Er, World Appl. Sci. J. 6(3), 365. (2009).

    Google Scholar 

  22. O.A. Oyedele, I.O. Oladipo and E. Elegbeleye, Int. J. Eng. Res. Technol. 2(9), (2013).

  23. A.Y. Koksal, “Inventory of hazelnut research, germplasm and references” (FAO 2020) http://www.fao.org/3/x4484e/x4484e00.htm#Toc Accessed 24, December 2020.

  24. C. Aydin, Biosyst. Eng. 82(3), 297. (2002).

    Google Scholar 

  25. F. Ozdemir, and I. Akinci, J. Food Eng. 63, 341. (2004).

    Google Scholar 

  26. S. Ercisli, I. Ozturk, M. Kara, F. Kalkan, H. Seker, O. Duyar, and Y. Erturk, Int. Agrophys. 25, 115. (2011).

    Google Scholar 

  27. N. Valentini, L. Rolle, C. Stevigny, and G. Zeppa, J. Sci Food Agric. 86, 1257. (2006).

    Google Scholar 

  28. D.R. Bohnhoff, K.S. Lawson, and J.A. Fischbach, Trans. ASABE 62(5), 1087. (2019).

    Google Scholar 

  29. W.R. Forbus Jr., S.D. Senter, and R.L. Wilson, J. Food Sci. 48, 1646. (1983).

    Google Scholar 

  30. N. Kotwaliwale, G.H. Brusewitz, and P.R. Weckler, Trans. ASAE 47(1), 227. (2004).

    Google Scholar 

  31. N. Kotwaliwale, P.R. Weckler, and G.H. Brusewitz, Biosyst. Eng. 94(2), 1999. (2006).

    Google Scholar 

  32. N. Kotwaliwale, P.R. Weckler, G.H. Brusewitz, A.G. Kranzler, and N.O. Maness, Postharvest Biol. Technol. 45, 372. (2007).

    Google Scholar 

  33. N. Kotwaliwale, K. Singh, A. Kalne, S.N. Jha, N. Seth, and A. Kar, J. Food Sci. Technol. 51(1), 1. (2011).

    Google Scholar 

  34. O. Kabas, and V. Vladut, Erwerbs-obstbau 58, 31. (2016).

    Google Scholar 

  35. H.K. Celik, J. Food Process Eng. 40(6), e12581. (2017).

    Google Scholar 

  36. M.H. Hsu, J.D. Mannapperuma, and R.P. Singh, J. Agric. Eng. Res. 49, 311. (1991).

    Google Scholar 

  37. S.M.A. Razavi, B. Emadzadeh, A. Rafe, and A.M. Amini, J. Food Eng. 81, 218. (2007).

    Google Scholar 

  38. S.M.A. Razavi, B. Emadzadeh, A. Rafe, and A.M. Amini, J. Food Eng. 81, 226. (2007).

    Google Scholar 

  39. R. Polat, C. Aydin, and B. Erol, Bulg. J. Agric. Sci. 13, 237. (2007).

    Google Scholar 

  40. M. Kashaninejad, A. Mortazavi, A., Safekordi, L.G. Tabil (2006) J. Food Eng.; 72:30.

  41. H. Maghsoudi, M.H., Khoshtaghaza and S. Minaei, Int. J. Food Prop., 13, 394 (2010)

  42. E. Altuntas, and M. Erkol, Czech J. Food Sci. 28(6), 547. (2010).

    Google Scholar 

  43. S. Ercisli, M. Kara, I. Ozturk, B. Sayinci, and F. Kalkan, Not. Bot .Horti .Agrobo. 39(2), 227. (2011).

    Google Scholar 

  44. S.M.T. Gharibzahedi, S.M. Mousavi, M. Hamedi, and F. Khodaiyan, Sci. Hortic. 135, 202. (2012).

    Google Scholar 

  45. R. Khir, Z. Pan, G.G. Atungulu, J.F. Thompson, and D. Shao, Food Bioprocess Technol. 6, 771. (2013).

    Google Scholar 

  46. M. Shirmohammadi, and J. Fielke, Int. J. Food Eng. 13(8), 20160324. (2017).

    Google Scholar 

  47. Y.B. Yurtlu, and E. Yesiloglu, J. Agric. Sci. 17, 337. (2011).

    Google Scholar 

  48. C. Delprete, and R. Sesana, J. Food Eng. 124, 28. (2014).

    Google Scholar 

  49. M. Guner, E. Dursun, and I.G. Dursun, Biosyst Eng. 85(4), 485. (2003).

    Google Scholar 

  50. J.S. Jennings, and N.H. Macmillan, J. Mater. Sci. 21, 1517. (1986).

    Google Scholar 

  51. P.C. Neves, S.L. Honorio, and A.C.O. Ferraz, Acta Hortic. 370, 197. (1995).

    Google Scholar 

  52. G.C. Braga, S.M. Couto, T. Hara, and J.T.P. Almeida Neto, J. Agric. Eng. Res. 72, 239. (1999).

    Google Scholar 

  53. M. Nazari Galedar, S.S. Mohtasebi, A. Tabatabaeefar, A. Jafari, and H. Fadaei, J. Food Eng. 95, 499. (2009).

    Google Scholar 

  54. M. Nazari Galedar, A. Tabatabaeefar, A. Jafari, S.S. Mohtasebi, and H. Fadaei, Int. J. Food Prop. 13, 1323. (2010).

    Google Scholar 

  55. S.M.A. Razavi, M.R. Edalatian, Int. J. Food Prop. 15, 507. (2012).

    Google Scholar 

  56. M.A. Koyuncu, K. Ekinci, and E. Savran, Biosyst. Eng. 87(3), 305. (2004).

    Google Scholar 

  57. E. Altuntas and Y. Ozkan, Int. J. Food Eng., 4(4), Art. 10 (2008).

  58. E. Altuntas, and M. Erkol, Food Bioprocess Technol. 4, 1288. (2011).

    Google Scholar 

  59. S.M.T. Gharibzahedi, S.M. Mousavi, M. Hamedi, F. Khodaiyan, and A. Dadashpour, J. Food Process. Preserv. 36(5), 423. (2012).

    Google Scholar 

  60. A. Ghafari, G.R. Chegini, J. Khazaei, and K. Vahdati, Int. J. Nuts Related Sci. 2(1), 11. (2011).

    Google Scholar 

  61. F. Sharifian, and M.H. Derafshi, J. Appl. Sci. 8(5), 886. (2008).

    Google Scholar 

  62. L. Li, Q. Zhang, and D. Huang, Sensors 14, 20078. (2014).

    Google Scholar 

  63. S.K. Mathanker, P.R. Weckler, and T.J. Bowser, Trans. ASABE 56(3), 1227. (2013).

    Google Scholar 

  64. Z. Du, Y. Hu, N.A. Buttar, and A. Mahmood, Food Sci. Nutr. 00, 1. (2019).

    Google Scholar 

  65. M. Vidhya, N. Varadharaju, Z. John Kennedy, D. Amirtham, and D. Manohar Jesudas, J. Food Process. Technol. 8, 673. (2017).

    Google Scholar 

  66. I.R. Donis-Gonzalez, D.E. Guyer, D.W. Fulbright, and A. Pease, Postharvest Biol. Technol. 94, 14. (2014).

    Google Scholar 

  67. T. Tan, N. Rahbar, S. Kwofie, D. Dissmore, S. Allameh, Ghavomi and W.O. Soboyejo, Acta Biomater., 7, 3796 (2011).

  68. J. Du, X. Niu, N. Rahbar, and W. Soboyejo, Acta Biomater. 9(2), 5273. (2013).

    Google Scholar 

  69. E. Ampaw, T.A. Owoseni, F. Du, N. Pinilla, J. Obayemi, J. Hu, P. Nigay, A. Nzihou, V. Uzonwanne, Z. Kana, M. Dewoolkar, T. Tan, and W. Soboyejo, Acta Biomater. 97, 535. (2019).

    Google Scholar 

  70. F. Du, S. Alghamdi, B. Riabbans, and T. Tan, Compos. B 172, 547. (2019).

    Google Scholar 

  71. S. Alghamdi, F. Du, J. Yang, G. Pinder, and T. Tan, J. Mech. Phys. Solids 138, 103928. (2020).

    Google Scholar 

  72. J.F.V. Vincent, Mal. Res. Soc. Symp. Proc. 292, 35. (1993).

    Google Scholar 

  73. C. Wang, L. Zhang and Y. Mai, Int. J. Fract., 69, 51 (1994/1995).

  74. C. Wang, L. Zhang and Y. Mai, Int. J. Fract., 69, 67 (1994/1995).

  75. R. Liu, C.H. Wang, and R.G. Bathgate, Int. J. Fract. 99, 307. (1999).

    Google Scholar 

  76. G. Kaupp, and M.R. Naimi-Jamal, J. Mater. Chem. 21, 8389. (2011).

    Google Scholar 

  77. G. Kaupp, and M. Kaupp, Sci. Res. Essays 2(5), 150. (2007).

    Google Scholar 

  78. M.R. Naimi-Jamal, and G. Kaupp, Int. Mat. Res. 98(5), 438. (2007).

    Google Scholar 

  79. M.R. Naimi-Jamal, and G. Kaupp, Wood. Mater. Sci. Eng. 6, 140. (2011).

    Google Scholar 

  80. M. Sonego, C. Fleck, and L.A. Pessan, Bioinspir. Biomim. 14(5), 056002. (2019).

    Google Scholar 

  81. M. Sonego, C. Fleck, and L.A. Pessan, Sci. Rep. 10, 6786. (2020).

    Google Scholar 

  82. M. Sonego, M. Madia, M. Eder, C. Fleck, and L.A. Pessan, J. Mech. Behav. Biomed. Mater. 116, 1751. (2021).

    Google Scholar 

  83. C. Fleck, P. Schuler, D. Meinel, P. Zaslansky, and J.D. Currey, Bioinspired. Biomimetic Nanobiomater. 1, 67. (2012).

    Google Scholar 

  84. T. Sano, and C.L. Randow, JOM 64(2), 212. (2012).

    Google Scholar 

  85. P. Schuler, T. Speck, A. Buhrig-Polaczek, and C. Fleck, PLoS ONE 9(8), e102913. https://doi.org/10.1371/journal.pone.0102913 (2014).

    Article  Google Scholar 

  86. L.T. Wakeling, R.L. Mason, B.R. D’Arcy, N.A. Caffin, and D. Gowanlock, J. Food Sci. 68(7), 2238. (2003).

    Google Scholar 

  87. T.T. Xue, J. Liu, Y.B. Shen, and G.Q. Liu, J. Hortic. Sci. Biotechnol. 93(4), 441. (2017).

    Google Scholar 

  88. M. Yazdi, M.A. Khalili and M. Golabchi, A preliminary study of the structure and architecture of Walnut Shell, In Selected Abstracts in the 3rd International Conference of Bionic Engineering (ICBE’10).

  89. H. Zhang, L. Shen, H. Lan, Y. Li, Y. Liu, Y. Tang, and W. Li, Int. J. Agric. Biol. Eng. 11(6), 81. (2018).

    Google Scholar 

  90. A. Bernard, S. Hamdy, L. Le Corre, E. Dirlewanger, and F. Lheureux, Plant Methods 16, 115. (2020).

    Google Scholar 

  91. K. Hamalainen, L. Harhanen, A. Kallonen, A. Kujanpaa, E. Niemi and S. Siltanen, “Tomographic X-ray data of a walnut” (arXiv 2015) https://arxiv.org/abs/1502.04064 Accessed 24, December 2020.

  92. L. Austin, R. Kumar, B. Kousar, C.H. Lampadaris and M. Mar Lucas. Tomography of a Walnut. https://doi.org/10.13140/RG.2.2.25130.52161. Accessed 24, December 2020.

  93. H. Der Sarkissian, F. Lucka, M. van Eijnatten, G. Colacicco, S.B. Coban, and K.J. Batenurg, Sci. Data 6, 215. (2019).

    Google Scholar 

  94. M.G. Simpson, Diversity and Classification of Flowering Plants: Eudicots, Plant Systematics (2nd Ed.), ed. M.G. Simpson (London: Academic Press, 2010), p. 347.

  95. B. Ji, and H. Gao, Annu. Rev. Mater. Res. 40, 77. (2010).

    Google Scholar 

  96. G.X. Gu, M. Takaffoli, and M.J. Buehler, Adv. Mate. 29(28), 1700060. (2017).

    Google Scholar 

  97. C. Zhao, P. Zhang, J. Zhou, S. Qi, Y. Yamauchi, R. Shi, R. Fang, Y. Ishida, S. Wang, A.P. Tomsia, M. Liu, and L. Jiang, Nature 580(7802), 210. (2020).

    Google Scholar 

  98. L.B. Mao, H.L. Gao, H.B. Yao, L. Liu, H. Cölfen, G. Liu, S.M. Chen, S.K. Li, Y.X. Yan, Y.Y. Liu, and S.H. Yu, Science 354(6308), 107. (2016).

    Google Scholar 

  99. R.K. Nalla, J.H. Kinney, and R.O. Ritchie, Nat. Mater. 2(3), 164. (2003).

    Google Scholar 

  100. S.W. Cranford, A. Tarakanova, N.M. Pugno, and M.J. Buehler, Nature 482(7383), 72. (2012).

    Google Scholar 

  101. Z. Qin, B.G. Compton, J.A. Lewis, and M.J. Buehler, Nat. Commun. 6(1), 1. (2015).

    Google Scholar 

  102. T. Tan and W. Soboyejo, Bamboo-Inspired Materials and Structures, Bioinspired Structures and Design, ed. W. Soboyejo and L. Daniel (Cambridge: Cambridge University Press, 2020), pp.89-110.

  103. B. Ji, and H. Gao, J. Mech. Phys. Solids 52, 1963. (2004).

    Google Scholar 

  104. G. Gu, C. Chen, D. Richmond, and M.J. Buehler, Mater. Horiz. 5, 939. (2018).

    Google Scholar 

  105. S. Alghamdi, L. Zhuang, F. Du, J. Yang, K.A. Dahmen, and T. Tan, Nano Lett. 20(7), 5024. (2020).

    Google Scholar 

  106. S. Alghamdi, T. Tan, C. Hale-Sills, F. Vilmont, T. Xia, J. Yang, D. Huston, and M. Dewoolkar, Sci. Rep. 7(1), 1. (2017).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from the Vermont Manufacturing Collaborative funding (CS-20-1601) from US Industrial Base Assessment and Sustainment (IBAS) and Vermont Venture Innovation Fund (031365). Appreciation is also extended to support from Vermont Technical College and University of Vermont.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Tan.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 176 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, F., Tan, T. Recent Studies in Mechanical Properties of Selected Hard-Shelled Seeds: A Review. JOM 73, 1723–1735 (2021). https://doi.org/10.1007/s11837-021-04688-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04688-w

Navigation