Skip to main content

Advertisement

Log in

Detection of Defects in Additively Manufactured Stainless Steel 316L with Compact Infrared Camera and Machine Learning Algorithms

  • Additive Manufacturing for Energy Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) is an emerging method for cost-efficient fabrication of nuclear reactor parts. AM of metallic structures for nuclear energy applications is currently based on the laser powder bed fusion process, which can introduce internal material flaws, such as pores and anisotropy. Integrity of AM structures needs to be evaluated nondestructively because material flaws could lead to premature failures due to exposure to high temperature, radiation and corrosive environments in a nuclear reactor. Thermal tomography (TT) provides a capability for non-destructive evaluation of sub-surface defects in arbitrary size structures. We investigate TT of AM stainless steel 316L specimens with imprinted internal porosity defects using a relatively low-cost, small form factor infrared camera based on an uncooled micro-bolometer detector. Sparse coding-related K-means singular value decomposition machine learning, image processing algorithms are developed to improve the quality of TT images through removal of additive white Gaussian noise without blurring the images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Prog. Mater Sci. 92, 112 (2018).

    Article  Google Scholar 

  2. X. Lou and D. Gandy, JOM 71, 2834 (2019).

    Article  Google Scholar 

  3. S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Acta Mater. 108, 36 (2016).

    Article  Google Scholar 

  4. W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, and A.M. Rubenchik, Appl. Phys. Rev. 2, 041304 (2015).

    Article  Google Scholar 

  5. Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, and S.B. Tor, Mater. Des. 139, 565 (2018).

    Article  Google Scholar 

  6. R. Cunningham, S.P. Narra, C. Montgomery, J. Beuth, and A.D. Rollett, JOM 69, 479 (2017).

    Article  Google Scholar 

  7. C. Zhao, K. Fezzaa, R.W. Cunningham, H. Wen, F. De Carlo, L. Chen, A.D. Rollett, and T. Sun, Sci. Rep. 7, 3602 (2017).

    Article  Google Scholar 

  8. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315 (2016).

    Article  Google Scholar 

  9. J.J. Lewandowski and M. Seifi, Annu. Rev. Mater. Res. 46, 151 (2016).

    Article  Google Scholar 

  10. A.B. Spierings, T.L. Starr, and K. Wegener, Rapid Prototyp. J. 19, 88 (2013).

    Article  Google Scholar 

  11. S. Tammas-Williams, P.J. Withers, I. Todd, and P.B. Prangnell, Sci. Rep. 7, 7308 (2017).

    Article  Google Scholar 

  12. M.D. Sangid, P. Ravi, V. Prithivirajan, N.A. Miller, P. Kenesei, and J. Park, JOM 72, 465 (2020).

    Article  Google Scholar 

  13. D. Kong, C. Dong, X. Ni, and X. Li, Nat. Mater. Degrad. 3, 1 (2019).

    Google Scholar 

  14. G. Sander, J. Tan, P. Balan, O. Gharbi, D.R. Feenstra, L. Singer, S. Thomas, R.G. Kelly, J.R. Scully, and N. Birbillis, Corrosion 74, 1318 (2018).

    Article  Google Scholar 

  15. S.D. Holland and R.S. Reusser, Annu. Rev. Mater. Res. 46, 287 (2016).

    Article  Google Scholar 

  16. J.E. Siegel, M.F. Beemer, and S.M. Shepard, Addit. Manuf. 31, 100923 (2020).

    Google Scholar 

  17. Q.Y. Lu and C.H. Wong, Virtual Phys. Prototyp. 12, 301 (2017).

    Article  MathSciNet  Google Scholar 

  18. Q. Luo, B. Gao, W.L. Woo, and Y. Yang, NDT&E Int. 108, 102164 (2019).

    Article  Google Scholar 

  19. A. Thompson, I. Maskery, and R. Leach, Meas. Sci. Technol. 27, 072001 (2016).

    Article  Google Scholar 

  20. A.J. Brooks, J. Ge, M.M. Kirka, R.R. Dehoff, H.Z. Bilheux, N. Kardjilov, I. Manke, and L.G. Butler, Prog. Addit. Manuf. 2, 125 (2017).

    Article  Google Scholar 

  21. J. Rodenas, Radiat. Phys. Chem. 168, 108566 (2020).

    Article  Google Scholar 

  22. A. Heifetz, D. Shribak, T. Liu, T.W. Elmer, P. Kozak, S. Bakhtiari, B. Khaykovich, and W. Cleary, Trans. Am. Nucl. Soc. 121, 589 (2019).

    Google Scholar 

  23. X. Zhang, J. Saniie, W. Cleary, and A. Heifetz, JOM (2020). (Accepted).

  24. A. Heifetz, D. Shribak, X. Zhang, J. Saniie, Z.L. Fisher, T. Liu, J.G. Sun, T. Elmer, S. Bakhtiari, and W. Cleary, AIP Adv. 10, 105318 (2020).

    Article  Google Scholar 

  25. H.M. Jaeger and S.R. Nagel, Science 255, 1523 (1992).

    Article  Google Scholar 

  26. L.C. Wei, L.E. Ehrlich, M.J. Powell-Palm, C. Montgomery, J. Beuth, and J.A. Malen, Addit. Manuf. 21, 201 (2018).

    Google Scholar 

  27. C.S. Kim, Thermophysical properties of stainless steels, ANL-75-55 (1975).

  28. J. Mairal, F. Bach, J. Ponce, and G. Sapiro, in ICML ‘09: Proceedings of the 26th Annual International Conference on Machine Learning (2009).

  29. X. Zhang, J. Saniie, and A. Heifetz, in IEEE International Conference on Electro-Information Conference (EIT) (2020).

  30. X. Zhang, T. Gonnot, and J. Saniie, J. Signal Inf. Process. 8, 99 (2017).

    Google Scholar 

  31. N. Rajic, Compos. Struct. 58, 521 (2002).

    Article  Google Scholar 

  32. X. Zhang, W.J. Yi, and J. Saniie, in Proceedings of 2019 IEEE International Conference on Electro Information Technology (EIT) (2019), pp. 266–270.

  33. M. Aharon, M. Elad, and A. Bruckstein, IEEE Trans. Signal Process. 54, 4311 (2006).

    Article  Google Scholar 

  34. T.T. Cai and L. Wang, IEEE Trans. Inf. Theory 57, 4680 (2011).

    Article  Google Scholar 

  35. R. Snell, S. Tammas-Williams, L. Chechik, A. Lyle, E. Hernandez-Nava, C. Boig, G. Panoutsos, and I. Todd, JOM 72, 101 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Nuclear Energy, Nuclear Energy Enabling Technology (NEET) Advanced Methods of Manufacturing (AMM) program, under contract DE-AC02-06CH11357. We would like to acknowledge helpful discussions with Sasan Bakhtiari from Argonne National Laboratory, Boris Khaykovich from MIT Nuclear Laboratory and William Cleary from Westinghouse Electric Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Heifetz.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Saniie, J. & Heifetz, A. Detection of Defects in Additively Manufactured Stainless Steel 316L with Compact Infrared Camera and Machine Learning Algorithms. JOM 72, 4244–4253 (2020). https://doi.org/10.1007/s11837-020-04428-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04428-6

Navigation