Skip to main content

Advertisement

Log in

Spin-Polarized Transport and Optoelectronic Properties of a Novel-Designed Architecture with a Porphyrin-Based Wheel and Organometallic Multidecker Sandwich Complex-Based Axle

  • Quantum Materials for Energy-Efficient Computing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A novel “wheel-and-axle” architecture (c-P6)m/(FeBz)n, with (c-P6) denoting the wheel formed by six porphyrin-based segments and (FeBz)n the axle formed by the 1D iron benzene multidecker complex, is designed, and its electronic structure, transport property, and linear photoresponse are investigated. (c-P6)m/(FeBz)n shows a spin-polarized transport property. The spin filter efficiency of (c-P6)m/(FeBz)n can be > 90%, suggesting it is a very good candidate for spin filters. Furthermore, a distinct NDR feature is observed for (c-P6)m/(FeBz)n so it is can be used for making electronic switches and oscillators. Under linear light, both the wheel and axle of (c-P6)m/(FeBz)n exhibit a distinct polarized photoresponse character. The magnitude of the photoresponse can be tuned by the photon energy or by the l bias voltage. An off–on–off switch is observed within the considered photon energy range, showing potential application for optical switches. All these fascinating properties of (c-P6)m/(FeBz)n make the new 1D material especially attractive for electronic and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Kuramochi, A. Satake, M. Itou, K. Ogawa, Y. Araki, O. Ito, and Y. Kobuke, Chem. Eur. 14, 2827 (2008).

    Google Scholar 

  2. Y. Diskin-Posner, K.G. Patra, and I. Goldberg, Chem. Commun. 12, 1227–1230 (2002).

    Google Scholar 

  3. Y. Diskin-Posner, K.G. Patra, and I. Goldberg, Dalton Trans. 19, 2775 (2001).

    Google Scholar 

  4. K.D. Kumar, A. Das, and P. Dastidar, Inorg. Chem. 46, 7351 (2007).

    Google Scholar 

  5. T. Hasobe, Phys. Chem. Chem. Phys. 12, 44 (2010).

    Google Scholar 

  6. J.C. Medforth, Z. Wang, E.K. Martin, Y. Song, L.J. Jacobsenc, and A.J. Shelnutt, Chem. Commun. 47, 7261 (2009).

    Google Scholar 

  7. A.C. Hunter and J.S. Tomas, Am. Chem. Soc. 128, 8975 (2006).

    Google Scholar 

  8. E. Stulz, S. Scott, M. Ng, Y.F. Bond, A.D. Teat, S.J. Darling, S.L. Feeder, and N. Sanders, J. K. M. Inorg. Chem. 42, 6564 (2003).

    Google Scholar 

  9. N. Aratani, A. Osuka, H.Y. Kim, D. Jeong, and H. Kim, Angew. Chem. Int. Ed. 39, 1458 (2000).

    Google Scholar 

  10. A. Satake, M. Fujita, Y. Kurimotoa, and Y. Kobuke, Chem. Commun. 10, 1231 (2009).

    Google Scholar 

  11. M. Iyoda, J. Yamakawa, and J.M. Rahman, Angew. Chem. Int. Ed. 50, 10522 (2011).

    Google Scholar 

  12. L.E. Spitler, A.C. Johnson II, and M.M. Haley, Chem. Rev. 106, 5344 (2006).

    Google Scholar 

  13. C. Grave and A.D. Schlüter, Eur. J. Org. Chem. 2002, 3075 (2002).

    Google Scholar 

  14. D.R. Kennedy, D. Lloyd, and H. McNab, J. Chem. Soc. Perkin Trans. 1, 1601 (2002).

    Google Scholar 

  15. D.M. Peeks, W.D.T. Claridge, and L.H. Anderson, Nature 541, 200 (2017).

    Google Scholar 

  16. M. Ball, Y. Zhong, B. Fowler, B. Zhang, P. Li, G. Etkin, W.D. Paley, J. Decatur, K.A. Dalsania, H. Li, S. Xiao, F. Ng, L.M. Steigerwald, and C. Nuckolls, J. Am. Chem. Soc. 138, 12861 (2016).

    Google Scholar 

  17. J. Li, A. Ambroise, I.S. Yang, R.J. Diers, J. Seth, R.C. Wack, F.D. Bocian, D. Holten, and J.S. Lindsey, J. Am. Chem. Soc. 121, 8927 (1999).

    Google Scholar 

  18. M. Hoffmann, J.C. Wilson, B. Odell, and L.H. Anderson, Angew. Chem. Int. Ed. 46, 3122 (2007).

    Google Scholar 

  19. M. Hoffmann, J. Kärnbratt, H.M. Chang, M.L. Herz, B. Albinsson, and L.H. Anderson, Angew. Chem. Int. Ed. 47, 4993 (2008).

    Google Scholar 

  20. M.C. O’Sullivan, J.K. Sprafke, D.V. Kondratuk, C. Rinfray, T.D. Claridge, A. Saywell, M.O. Blunt, J.N. O’Shea, P.H. Beton, M. Malfois, and H.L. Anderson, Nature 469, 72–75 (2011).

    Google Scholar 

  21. V.D. Kondratuk, A.M.L. Perdigao, C.M. O’Sullivan, S. Svatek, G. Smith, N.J. O’Shea, H.P. Beton, and L.H. Anderson, Angew. Chem. Int. 51, 6696 (2012).

    Google Scholar 

  22. V.D. Kondratuk, A.M.L. Perdigão, S.M.A. Esmail, N.J. O’Shea, H.P. Beton, and L.H. Anderson, Nat. Chem. 7, 317 (2015).

    Google Scholar 

  23. J. Krömer, I. Rios-Carreras, G. Fuhrmann, C. Musch, M. Wunderlin, T. Debaerdemaeker, E. Mena-Osteritz, and P. Bäuerle, Angew. Chem. Int. Ed. 39, 3481 (2000).

    Google Scholar 

  24. F. Zhang, G. Götz, F.D.H. Winkler, A.C. Schalley, and P. Bäuerle, Angew. Chem. Int. Ed. 48, 6632 (2009).

    Google Scholar 

  25. M. Mayor and C. Dischdies, Angew. Chem. Int. Ed. 42, 3176 (2003).

    Google Scholar 

  26. K. Nakao, M. Nishimura, T. Tamachi, Y. Kuwatami, H. Miyasaka, T. Nishinaga, and M. Iyoda, J. Am. Chem. Soc. 128, 16740 (2006).

    Google Scholar 

  27. T. Kawase, R.H. Darabi, and M. Oda, Angew. Chem. Int. Ed. Engl. 35, 2664 (1996).

    Google Scholar 

  28. M. Ohkita, R.K. Ando, and T. Tsuji, Chem. Commun. 24, 2570 (2001).

    Google Scholar 

  29. R. Jasti, J. Bhattacharjee, J.B. Neaton, and C.R. Bertozzi, J. Am. Chem. Soc. 130, 17646 (2008).

    Google Scholar 

  30. S. Yamago, Y. Watanabe, and T. Iwamoto, Angew. Chem. Int. Ed. 49, 757 (2010).

    Google Scholar 

  31. T. Iwamoto, Y. Watanabe, Y. Sakamoto, T. Suzuki, and S. Yamago, J. Am. Chem. Soc. 133, 8354 (2011).

    Google Scholar 

  32. J.T. Sisto, R.M. Golder, S.E. Hirst, and R. Jasti, J. Am. Chem. Soc. 133, 15800 (2011).

    Google Scholar 

  33. C.M. O’Sullivan, K.J. Sprafke, V.D. Kondratuk, C. Rinfray, W.D.T. Claridge, A. Saywell, O.M. Blunt, N.J. O’Shea, H.P. Beton, M. Malfois, and L.H. Anderson, Nature 469, 72 (2011).

    Google Scholar 

  34. A. Bhaskar, G. Ramakrishna, K. Hagedorn, O. Varnavski, E. Mena-Osteritz, P. Bäuerle, and T. Goodson, J. Phys. Chem. B. 111, 946 (2007).

    Google Scholar 

  35. M. Williams-Harry, A. Bhaskar, G. Ramakrishna, T. Goodson, M. Imamura, A. Mawatari, K. Nakao, H. Enozawa, T. Nishinaga, and M. Iyoda, J. Am. Chem. Soc. 130, 3252 (2008).

    Google Scholar 

  36. P. Parkinson, V.D. Kondratuk, C. Menelaou, Q.J. Gong, L.H. Anderson, and M.L. Herz, J. Phys. Chem. Lett. 5, 4356 (2014).

    Google Scholar 

  37. C.-K. Yong, P. Parkinson, D.V. Kondratuk, W.-H. Chen, A. Stannard, A. Summerfield, K.J. Sprafke, C.M. O’Sullivan, H.P. Beton, and L.H. Anderson, Chem. Sci. 6, 181 (2015).

    Google Scholar 

  38. J.H. Xiang, L.J. Yang, G.J. Hou, and S.Q. Zhu, J. Am. Chem. Soc. 128, 2310 (2006).

    Google Scholar 

  39. V.V. Maslyuk, A. Bagrets, V. Meded, A. Arnold, F. Evers, M. Brandbyge, T. Bredow, and I. Mertig, Phys. Rev. Lett. 97, 097201 (2006).

    Google Scholar 

  40. M. Koleini, M. Paulsson, and M. Brandbyge, Phys. Rev. Lett. 98, 197202 (2007).

    Google Scholar 

  41. Y. Mokrousov, N. Atodiresei, G. Bihlmayer, S. Gel, and S. Blugel, Nanotechnology 18, 495402 (2007).

    Google Scholar 

  42. N. Hosoya, R. Takegami, J. Suzumura, K. Yada, K. Koyasu, K. Miyajima, M. Mitsul, B.M. Knickelbein, S. Yabushita, and A. Nakajima, J. Phys. Chem. A 109, 9 (2005).

    Google Scholar 

  43. L. Zhou, S. Yang, M. Ng, B.M. Sullivan, C.B.V. Tan, and L. Shen, J. Am. Chem. Soc. 130, 4023 (2008).

    Google Scholar 

  44. L. Shen, W.S. Yang, F.M. Ng, V. Ligatchev, L. Zhou, and Y. Feng, J. Am. Chem. Soc. 130, 13956 (2008).

    Google Scholar 

  45. L. Wang, Z. Cai, J. Wang, J. Lu, G. Luo, L. Lai, J. Zhou, R. Qin, Z. Gao, D. Yu, G. Li, N.W. Mei, and S. Sanvito, Nano Lett. 8, 3640 (2008).

    Google Scholar 

  46. S. Nagao, A. Kato, and A. Nakajima, J. Am. Chem. Soc. 122, 4221 (2000).

    Google Scholar 

  47. X. Wu and C.X. Zeng, J. Am. Chem. Soc. 131, 14246 (2009).

    Google Scholar 

  48. J. Wang, H.P. Acioli, and J. Jellinek, J. Am. Chem. Soc. 127, 2812 (2005).

    Google Scholar 

  49. Y.X. Zhang, L.J. Wang, Y. Gao, and C.X. Zeng, ACS Nano 3, 537 (2008).

    Google Scholar 

  50. T. Kurikawa, Y. Negishi, H.F. Satoshi, S. Nagao, K. Miyajima, A. Nakajima, and K. Kaya, J. Am. Chem. Soc. 120, 11766 (1998).

    Google Scholar 

  51. K.A. Kandalam, K.B. Rao, P. Jena, and R. Pandey, J. Chem. Phys. 120, 10414 (2004).

    Google Scholar 

  52. M.H. Weng, T. Ozaki, and K. Terakura, J. Phys. Soc. Jpn. 77, 014301 (2008).

    Google Scholar 

  53. X. Zhang and L.J. Wang, J. Phys. Chem. A 114, 2319 (2010).

    Google Scholar 

  54. G.R. Chapman and C.J. Sherman, Tetrahedron 53, 15911 (1997).

    Google Scholar 

  55. L.J. Atwood, J.L. Barbour, and A. Jerga, Science 296, 2367 (2002).

    Google Scholar 

  56. F. Toda and K. Agaki,Tetrahedron Lett. 33, 3695 (1968).

    Google Scholar 

  57. F. Toda, L.D. Ward, and H. Hart, Tetrahedron Lett. 22, 3865 (1981).

    Google Scholar 

  58. E. Weber, K. Skobridis, A. Wierig, and R.L. Nassimbeni, J. Chem. Soc. Perkin Trans. 2, 2123 (1992).

    Google Scholar 

  59. R.M. Caira, R.L. Nassimbeni, F. Toda, and D. Vujovic, J. Chem. Soc. Perkin Trans. 2, 2681 (1999).

    Google Scholar 

  60. R.K.R. Jetti, F. Xue, W.C.T. Mak, and A. Nangia, J. Chem. Soc. Perkin Trans 2, 1223 (2000).

    Google Scholar 

  61. S. Noro, S. Kitagawa, M. Kondo, and K. Seki, Angew. Chem. Int. Ed. 39, 2081 (2000).

    Google Scholar 

  62. M. Rickhaus, A.V. Jentzsch, L. Tejerina, I. Grübner, M. Jirasek, T.D.W. Claridge, and H.L. Anderson, J. Am. Chem. Soc. 139, 16502 (2017).

    Google Scholar 

  63. P. Sozzani, A. Comotti, R. Simonutti, R. Meersman, T. Meersman, W.J. Logan, and A. Pines, Angew. Chem. Int. Ed. 39, 2695 (2000).

    Google Scholar 

  64. L.M. Pellegrino, T. Carmen, G. Carmine, S. Annunziata, D.R. Margherita, and N. Placido, J. Org. Chem. 82, 8973 (2017).

    Google Scholar 

  65. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Google Scholar 

  66. M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B Condens. Matter Mater. Phys. 65, 165401 (2002).

    Google Scholar 

  67. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002).

    Google Scholar 

  68. ATK, Version 13.8, Atomistix a/s, www.quantumwise.com (2013).

  69. P.M. Panchmatia, B. Sanyal, and P.M. Oppeneer, Chem. Phys. 343, 47 (2008).

    Google Scholar 

  70. J. Taylor, H. Guo, and J. Wang, Phys. Rev. B Condens. Matter Mater. Phys. 63, 245407 (2001).

    Google Scholar 

  71. D. Waldron, P. Haney, B. Larade, A. MacDonald, and H. Guo, Phys. Rev. Lett. 96, 166804 (2006).

    Google Scholar 

  72. K. Miyajima, A. Nakajima, S. Yabushita, B.M. Knickelbein, and K. Kaya, J. Am. Chem. Soc. 126, 13202 (2004).

    Google Scholar 

  73. L. Zhang, K. Gong, J. Chen, L. Liu, D. Xiao, and H. Guo, Phys. Rev. B Condens. Matter Mater. Phys. 90, 195428 (2014).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51973046), Nature Science Foundation of Heilongjiang Province of China (Grant No. B2018007), and Harbin Foundation for Leaders of Disciplines (Grant No. 2017RAXXJ002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiling Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Yang, Z., Wang, Y. et al. Spin-Polarized Transport and Optoelectronic Properties of a Novel-Designed Architecture with a Porphyrin-Based Wheel and Organometallic Multidecker Sandwich Complex-Based Axle. JOM 72, 3149–3159 (2020). https://doi.org/10.1007/s11837-020-04153-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04153-0

Navigation