Skip to main content
Log in

Ignition and Mechanical Properties of Hot Extruded Magnesium Alloys with Trace Yttrium Additions

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The ignition risk of magnesium restricts its usage in many transport applications. Yttrium has proven to be a potent alloying element to increase the ignition properties of magnesium, although large alloying quantities are generally utilized. The present work analyzes the effect of trace yttrium additions on the ignition, flammability and mechanical properties of wrought pure Mg and AZ31. A range of alloys were cast with increasing quantities of yttrium ranging from 0 wt.% to 0.2 wt.%. It was found that a concentration of 0.1 wt.% Y and above in Mg–Y binary alloys was able to increase the ignition temperature and flammability resistance. The observed increase was due to the formation of complex (MgO + Y2O3) oxide structures. However, yttrium additions lowered the ignition temperature when alloyed with AZ31. Additionally, yttrium additions were found to improve the mechanical properties when alloyed with pure Mg, although the impact on the AZ31 alloy was negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Kulekci, Int. J Adv. Manuf. Technol. 39, 9 (2008).

    Article  Google Scholar 

  2. Lufthansa Group, Fuel efficiency at the Lufthansa Group-Cutting costs and protecting the environment (Lufthansa Group, 2012).

  3. E. Aghion, B. Bronfin, and D. Eliezer, J. Mater. Process. Technol. 117, 3 (2001).

    Article  Google Scholar 

  4. J. Fan, Z. Chen, W. Yang, S. Fang, and B. Xu, J. Rare Earth 30, 1 (2012).

    Article  Google Scholar 

  5. J. Fan, C. Yang, and B. Xu, J. Rare Earth 30, 5 (2012).

    Google Scholar 

  6. J.F. Fan, C.L. Yang, G. Han, S. Fang, W.D. Yang, and B.S. Xu, J. Alloys Compd. 509, 5 (2011).

    Google Scholar 

  7. S.K. Kim, J.-K. Lee, Y.-O. Yoon, and H.-H. Jo, J. Mater. Process. Technol. 187–188, 1 (2007).

    Google Scholar 

  8. T.-S. Shih, J.-H. Wang, and K.-Z. Chong, Mater. Chem. Phys. 85, 2 (2004).

    Article  Google Scholar 

  9. Z. Xiaoqin, W. Qudong, L. Yizhen, Z. Yanping, D. Wenjiang, and Z. Yunhu, J. Mater. Process. Technol. 112, 1 (2001).

    Article  Google Scholar 

  10. I. Ostrovsky, Y. Henn, International Conference, New challenges in aeronautics, ASTEC 2007.

  11. SEA-International, Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft and General Aviation. Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft and General Aviation, vol. AS8049. SEA Aircraft Seat Committee (2005).

  12. F.A. Administration, Final Policy Statement on Flammability Testing of Interior Materials (2012).

  13. Federal Aviation Adminstration, Updated Statement on the Use of Magnesium in Airplane Cabins. Use of Magnesium in Airplane Cabins, (Faa, 2012).

  14. B. Gwynne, Magnesium in aircraft seats SAE update, in International Aircraft Materials Fire Test Working Group (Atlantic City, New Jersey, USA, 2015).

  15. F. Czerwinski, Corros. Sci. 86, 1 (2014).

    Article  Google Scholar 

  16. A. Prasad, Z. Shi, and A. Atrens, Adv. Eng. Mater. 14, 9 (2012).

    Google Scholar 

  17. P.-Y. Lin, H. Zhou, W.-P. Li, W. Li, M.-X. Wang, Q.-C. Guo, and H.-C. Tang, Corros. Sci. 51, 301 (2009).

    Article  Google Scholar 

  18. P.-Y. Lin, H. Zhou, W.-P. Li, M.-X. Wang, Q.-C. Guo, H.-C. Tang, and W. Li, J. Alloys Compd. 481, 1 (2009).

    Article  Google Scholar 

  19. S. Zhao, H. Zhou, T. Zhou, Z. Zhang, P. Lin, and L. Ren, Corros. Sci. 67, 1 (2013).

    Article  Google Scholar 

  20. M. Liu, D.S. Shih, C. Parish, and A. Atrens, Corros. Sci. 54, 1 (2012).

    Article  Google Scholar 

  21. N.V. Ravi Kumar, J.J. Blandin, M. Suéry, and E. Grosjean, Scr. Mater. 49, 3 (2003).

    Article  Google Scholar 

  22. A. Prasad, Z. Shi, and A. Atrens, Corros. Sci. 55, 1 (2012).

    Article  Google Scholar 

  23. E. McCafferty, Introduction to Corrosion Science (New York: Springer, 2010).

    Book  Google Scholar 

  24. Kainer, K.U., Magnesium: Proceedings of the 7th International Conference on Magnesium Alloys and Their Applications (New York: Wiley, 2007).

  25. A.G. Beer and M.R. Barnett, Mater. Sci. Eng. A 485, 1 (2008).

    Article  Google Scholar 

  26. H. Okamoto, J. Phase. Equilib. Diff. 13, 1 (1992).

    Google Scholar 

  27. C. Bettles and M. Barnett, Advances in Wrought Magnesium Alloys: Fundamentals of Processing, Properties and Applications (Amsterdam: Elsevier, 2012).

    Book  Google Scholar 

  28. W.D. Callister and D.G. Rethwisch, Materials Science and Engineering: an Introduction, Vol. 7 (New York: Wiley, 2007).

    Google Scholar 

  29. F.-S. Pan, M.-B. Chen, J.-F. Wang, J. Peng, and A.-T. Tang, Trans. Nonferrous Met. Soc. China 18, S1 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Babaniaris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaniaris, S., Varma, R. & Beer, A. Ignition and Mechanical Properties of Hot Extruded Magnesium Alloys with Trace Yttrium Additions. JOM 72, 3011–3019 (2020). https://doi.org/10.1007/s11837-020-04115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04115-6

Navigation