Skip to main content
Log in

Investigation of Discarded Printed Circuit Boards for Recovery of Copper Values

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The present study reports a process route to recover copper values from two different discarded printed circuit boards. The boards are shredded and subjected to both air and water fluidization for the separation of plastic values. Tap density measurements are used to delineate the separation efficiency, and metal recovery is calculated using Newton efficiency. Thermal exposure of the underflow of water fluidization at 750°C yielded a copper-enriched concentrate with a purity of 73% copper with 11% Sn and 6% Pb and ~ 90% purity with 89% recovery for PCB-1 and PCB-2, respectively. It is concluded that a copper tin–lead mixed concentrate can be recovered from PCB-1, while almost pure copper can be recovered from PCB-2. The processing route followed is environment-friendly and cost-effective for the recovery of metallic values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Cayumil, R. Khanna, R. Rajarao, P.S. Mukherjee, and V. Sahajwalla, Waste Manag 57, 121 (2016).

    Article  Google Scholar 

  2. R.K. Nekouei, F. Pahlevani, R. Rajarao, R. Golmohammadzadeh, and V. Sahajwalla, Mater. Des. 141, 26 (2018).

    Article  Google Scholar 

  3. G. Zhang, H. Wang, J. Yang, Y. He, and T. Zhang, J. Clean. Prod. 187, 1036 (2018).

    Article  Google Scholar 

  4. K. Ulman, S. Maroufi, S. Bhattacharyya, and V. Sahajwalla, J. Clean. Prod. 198, 1485 (2018).

    Article  Google Scholar 

  5. R.G. Charles, P. Douglas, I.L. Hallin, I. Matthews, and G. Liversage, Waste Manag 60, 505 (2017).

    Article  Google Scholar 

  6. A. Shokri, F. Pahlevani, I. Cole, and V. Sahajwalla, J. Environ. Manage. 199, 7 (2017).

    Article  Google Scholar 

  7. R. Hossain, R.K. Nekouei, I. Mansuri, V. Sahajwalla, and A.C.S. Sustain, Chem. Eng. 7, 1006 (2019).

    Google Scholar 

  8. R. Cayumil, R. Khanna, M. Ikram-Ul-Haq, R. Rajarao, A. Hill, and V. Sahajwalla, Waste Manag 34, 1783 (2014).

    Article  Google Scholar 

  9. A. Shokri, F. Pahlevani, K. Levick, I. Cole, and V. Sahajwalla, J. Clean. Prod. 142, 2586 (2017).

    Article  Google Scholar 

  10. S. Maroufi, M. Mayyas, R.K. Nekouei, M. Assefi, V. Sahajwalla, and A.C.S. Sustain, Chem. Eng. 6, 3765 (2018).

    Google Scholar 

  11. V. Sahajwalla, R. Cayumil, R. Khanna, M. Ikram-Ul-Haq, R. Rajarao, P.S. Mukherjee, and A. Hill, J. Sustain. Metall. 1, 75 (2015).

    Article  Google Scholar 

  12. L.A. Castro and A.H. Martins, Braz. J. Chem. Eng. 26, 649 (2009).

    Article  Google Scholar 

  13. H. Lee and B. Mishra, Miner. Eng. 123, 1 (2018).

    Article  Google Scholar 

  14. A. Das, A. Vidyadhar, and S.P. Mehrotra, Resour. Conserv. Recycl. 53, 464 (2009).

    Article  Google Scholar 

  15. C. Eswaraiah, T. Kavitha, S. Vidyasagar, and S.S. Narayanan, Chem. Eng. Process. Process Intensif. 47, 565 (2008).

    Article  Google Scholar 

  16. Y. Han, W. He, L. Li, G. Li, and J. Huang, Powder Technol. 295, 142 (2016).

    Article  Google Scholar 

  17. Q. Guo, X. Yue, M. Wang, and Y. Liu, Powder Technol. 198, 422 (2010).

    Article  Google Scholar 

  18. H. Wang, G. Zhang, J. Hao, Y. He, T. Zhang, and X. Yang, J. Clean. Prod. 170, 1501 (2018).

    Article  Google Scholar 

  19. G. Zhang, Y. He, Y. Feng, T. Zhang, H. Wang, and X. Zhu, Sep. Purif. Technol. 207, 321 (2018).

    Article  Google Scholar 

  20. C. Duan, X. Wen, C. Shi, Y. Zhao, B. Wen, and Y. He, J. Hazard. Mater. 166, 478 (2009).

    Article  Google Scholar 

  21. Y.J. Park and D.J. Fray, J. Hazard. Mater. 164, 1152 (2009).

    Article  Google Scholar 

  22. C. Guo, H. Wang, W. Liang, J. Fu, and X. Yi, Waste Manag 31, 2161 (2011).

    Article  Google Scholar 

  23. A. Barnwal, S. Vishvakarma, and N. Dhawan, Mater. Today Proc. 5, 17046 (2018).

    Article  Google Scholar 

  24. H.M. Veit, C.C. de Pereira, and A.M. Bernardes, JOM 54, 45 (2002).

    Article  Google Scholar 

  25. R.K. Nekouei, F. Pahlevani, R. Rajarao, R. Golmohammadzadeh, and V. Sahajwalla, J. Clean. Prod. 184, 1113 (2018).

    Article  Google Scholar 

  26. K. Ulman, A. Ghose, S. Maroufi, I. Mansuri, and V. Sahajwalla, Waste Manag 81, 138 (2018).

    Article  Google Scholar 

  27. R. Cayumil, M. Ikram-Ul-Haq, R. Khanna, R. Saini, P.S. Mukherjee, B.K. Mishra, and V. Sahajwalla, Waste Manag 73, 556 (2018).

    Article  Google Scholar 

  28. A. Barnwal and N. Dhawan, J. Sustain. Metall. 5, 519 (2019).

    Article  Google Scholar 

  29. P.P.M. Ribeiro, I.D. Dos Santos, and A.J.B. Dutra, J. Mater. Res. Technol. 8, 513 (2019).

    Article  Google Scholar 

  30. T. Hirajima, A. Bissombolo, K. Sasaki, K. Nakayama, H. Hirai, and M. Tsunekawa, Int. J. Miner. Process. 77, 240 (2005).

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the funding from the Faculty Initiation Grant received from the Indian Institute of Technology, Roorkee, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Dhawan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnwal, A., Dhawan, N. Investigation of Discarded Printed Circuit Boards for Recovery of Copper Values. JOM 72, 2983–2992 (2020). https://doi.org/10.1007/s11837-020-04113-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04113-8

Navigation