Skip to main content
Log in

Method for Fabricating Depth-Specific TEM In Situ Tensile Bars

  • In-Situ Characterization Techniques for Investigating Nuclear Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The growing use of ion irradiation to assess degradation of nuclear materials has created a need to develop novel methods to probe the mechanical response of shallow ion-irradiated layers. Transmission electron microscopy (TEM) in situ mechanical testing can isolate the ion-irradiated layer from its unirradiated substrate. However, there is a lack of established procedures for preparing TEM in situ mechanical testing specimens from bulk materials requiring depth-specific examination, e.g., target dose on the ion irradiation damage profile. This study demonstrates a new method for extracting depth-specific TEM in situ tensile bars from a bulk specimen of Fe-5 wt.%Mo. Measured yield stress, ultimate tensile stress, Young’s modulus, and elongation are consistent with those properties obtained from similarly sized Fe and Mo single-crystal nanowires. Results are discussed in the context of the specimen size effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.J. Zinkle and L.L. Snead, Scr. Mater. 143, 154–160 (2018).

    Google Scholar 

  2. G.S. Was, J. Mater. Res. 30, 1158–1182 (2015).

    Google Scholar 

  3. L. Shao, J. Gigax, D. Chen, H. Kim, F.A. Garner, J. Wang, and M.B. Toloczko, Nucl. Instruments Methods Phys. Res. B 409, 251–254 (2017).

    Google Scholar 

  4. P. Hosemann, D. Kiener, Y. Wang, and S.A. Maloy, J. Nucl. Mater. 425, 136–139 (2012).

    Google Scholar 

  5. D.E.J. Armstrong, C.D. Hardie, J. Gibson, A.J. Bushby, P.D. Edmondson, and S.G. Roberts, J. Nucl. Mater. 462, 374–381 (2015).

    Google Scholar 

  6. C.K. Dolph, D.J. da Silva, M.J. Swenson, and J.P. Wharry, J. Nucl. Mater. 481, 33–45 (2016).

    Google Scholar 

  7. H. Vo, A. Reichardt, C. Howard, M.D. Abad, D. Kaoumi, P. Chou, and P. Hosemann, JOM 67, 2959–2964 (2015).

    Google Scholar 

  8. X. Bai, S. Wu, P.K. Liaw, L. Shao, and J. Gigax, Metals 7, 25 (2017).

    Google Scholar 

  9. K.S. Mao, C. Sun, Y. Huang, C.-H. Shiau, F.A. Garner, P.D. Freyer, and J.P. Wharry, Materialia 5, 100208 (2019).

    Google Scholar 

  10. A. Kareer, A. Prasitthipayong, D. Krumwiede, D.M. Collins, P. Hosemann, and S.G. Roberts, J. Nucl. Mater. 498, 274–281 (2018).

    Google Scholar 

  11. M. Saleh, A. Xu, C. Hurt, M. Ionescu, J. Daniels, P. Munroe, L. Edwards, and D. Bhattacharyya, Int. J. Plast. 112, 242–256 (2019).

    Google Scholar 

  12. S. Özerinç, R.S. Averback, and W.P. King, J. Nucl. Mater. 451, 104–110 (2014).

    Google Scholar 

  13. P. Landau, Q. Guo, P. Hosemann, Y. Wang, and J.R. Greer, Mater. Sci. Eng. A 612, 316–325 (2014).

    Google Scholar 

  14. K.S. Mao, C. Sun, X. Liu, H.J. Qu, A.J. French, P.D. Freyer, F.A. Garner, L. Shao, and J.P. Wharry, J. Nucl. Mater. 528, 151878 (2020).

    Google Scholar 

  15. K.S. Mao, C. Sun, C.-H. Shiau, K.H. Yano, P.D. Freyer, A.A. El-Azab, F.A. Garner, A. French, L. Shao, and J.P. Wharry, Scr. Mater. 178, 1–6 (2020).

    Google Scholar 

  16. P. Hosemann, Scr. Mater. 143, 161–168 (2018).

    Google Scholar 

  17. P. Hosemann, C. Shin, and D. Kiener, J. Mater. Res. 30, 1231–1245 (2015).

    Google Scholar 

  18. D. Kiener, A.M. Minor, O. Anderoglu, Y. Wang, S.A. Maloy, and P. Hosemann, J. Mater. Res. 27, 2724–2736 (2012).

    Google Scholar 

  19. T. Ajantiwalay, H. Vo, R. Finkelstein, P. Hosemann, and A. Aitkaliyeva, JOM 72, 113–122 (2020).

    Google Scholar 

  20. D. Kiener, P.J. Guruprasad, S.M. Keralavarma, G. Dehm, and A.A. Benzerga, Acta Mater. 59, 3825–3840 (2011).

    Google Scholar 

  21. S. Mao, S. Shu, J. Zhou, R.S. Averback, and S.J. Dillon, Acta Mater. 82, 328–335 (2015).

    Google Scholar 

  22. W.-Z. Han, M.-S. Ding, and Z.-W. Shan, Scr. Mater. 147, 1–5 (2018).

    Google Scholar 

  23. C. Chisholm, Quantitative In Situ TEM Studies of Small-Scale Plasticity in Irradiated and Unirradiated Metals, Ph.D. Dissertation (Berkeley: University of California, 2015).

  24. M.-S. Ding, L. Tian, W.-Z. Han, J. Li, E. Ma, and Z.-W. Shan, Phys. Rev. Lett. 117, 215501 (2016).

    Google Scholar 

  25. K.H. Yano, M.J. Swenson, Y. Wu, and J.P. Wharry, J. Nucl. Mater. 483, 107–120 (2017).

    Google Scholar 

  26. K.H. Yano, M.J. Swenson, and J.P. Wharry, J. Nucl. Mater. 502, 201 (2018).

    Google Scholar 

  27. G.S. Jawaharram, P.M. Price, C.M. Barr, K. Hattar, R.S. Averback, and S.J. Dillon, Scr. Mater. 148, 1–4 (2018).

    Google Scholar 

  28. H.J. Qu, K.H. Yano, P.V. Patki, M.J. Swenson, and J.P. Wharry, J. Mater. Res. (2020). https://doi.org/10.1557/jmr.2019.295.

    Article  Google Scholar 

  29. J. Kacher, C. Kirchlechner, J. Michler, E. Polatidis, R. Schwaiger, H. Van Swygenhoven, M. Taheri, and M. Legros, MRS Bull. 44, 465–470 (2019).

    Google Scholar 

  30. E. Spiecker, S.H. Oh, Z.-W. Shan, Y. Ikuhara, and S.X. Mao, MRS Bull. 44, 443–449 (2019).

    Google Scholar 

  31. D. Kiener, P. Hosemann, S.A. Maloy, and A.M. Minor, Nat. Mater. 10, 608–613 (2011).

    Google Scholar 

  32. G. Dehm, B.N.N. Jaya, R. Raghavan, and C. Kirchlechner, Acta Mater. 142, 248–282 (2018).

    Google Scholar 

  33. P.J. Imrich, C. Kirchlechner, D. Kiener, and G. Dehm, JOM 67, 1704–1712 (2015).

    Google Scholar 

  34. J. Cumings and A. Zettl, Science 289, 602–604 (2000).

    Google Scholar 

  35. Y. Zhu and H.D. Espinosa, Proc. Natl. Acad. Sci. 102, 14503–14508 (2005).

    Google Scholar 

  36. M.A. Haque and M.T.A. Saif, Scr. Mater. 47, 863–867 (2002).

    Google Scholar 

  37. X. Wang, K. Chen, Y. Zhang, J. Wan, O.L. Warren, J. Oh, J. Li, E. Ma, and Z. Shan, Nano Lett. 15, 7886–7892 (2015).

    Google Scholar 

  38. D. Kiener and A.M. Minor, Nano Lett. 11, 3816–3820 (2011).

    Google Scholar 

  39. V. Samaeeaghmiyoni, H. Idrissi, J. Groten, R. Schwaiger, and D. Schryvers, Micron 94, 66–73 (2017).

    Google Scholar 

  40. B.M. Morrow, E.K. Cerreta, R.J. Mccabe, and C.N. Tome, JOM 67, 1721–1728 (2015).

    Google Scholar 

  41. Q. Yu, L. Qi, K. Chen, R.K. Mishra, J. Li, and A.M. Minor, Nano Lett. 12, 887–892 (2012).

    Google Scholar 

  42. L. Jiang, T. Hu, H. Yang, D. Zhang, T. Topping, E.J. Lavernia, and J.M. Schoenung, Nanoscale 8, 10541 (2016).

    Google Scholar 

  43. L.A. Giannuzzi, J.L. Drown, S.R. Brown, R.B. Irwin, and F.A. Stevie, Microsc. Res. Tech. 41, 285–290 (1998).

    Google Scholar 

  44. D. Kiener, C. Motz, M. Rester, M. Jenko, and G. Dehm, Mater. Sci. Eng. A 459, 262–272 (2007).

    Google Scholar 

  45. T. Malis, S.C. Cheng, and R.F. Egerton, J. Electron Microsc. Tech. 8, 193–200 (1988).

    Google Scholar 

  46. G. Sainath and B.K. Choudhary, Mater. Sci. Eng. A 640, 98–105 (2015).

    Google Scholar 

  47. G. Sainath and B.K. Choudhary, Comput. Mater. Sci. 111, 406–415 (2016).

    Google Scholar 

  48. C.J. Healy and G.J. Ackland, Acta Mater. 70, 105–112 (2014).

    Google Scholar 

  49. A. Ojha, H. Sehitoglu, L. Patriarca, and H.J. Maier, Model. Simul. Mater. Sci. Eng. 22, 1–21 (2014).

    Google Scholar 

  50. C. Chisholm, H. Bei, M.B. Lowry, J. Oh, S.A. Syed Asif, O.L. Warren, Z.W. Shan, E.P. George, and A.M. Minor, Acta Mater. 60, 2258–2264 (2012).

    Google Scholar 

  51. H. Yilmaz, C.J. Williams, J. Risan, and B. Derby, Materialia 7, 100424 (2019).

    Google Scholar 

  52. A.S. Schneider, B.G. Clark, C.P. Frick, P.A. Gruber, and E. Arzt, Philos. Mag. Lett. 90, 841–849 (2010).

    Google Scholar 

  53. E. Arzt, Acta Mater. 46, 5611–5626 (1998).

    Google Scholar 

  54. J.R. Greer and J.T.M. De Hosson, Prog. Mater Sci. 56, 654–724 (2011).

    Google Scholar 

  55. J.P. Wharry, K.H. Yano, and P.V. Patki, Scr. Mater. 162, 63–67 (2019).

    Google Scholar 

  56. D. Kiener, W. Grosinger, G. Dehm, and R. Pippan, Acta Mater. 56, 580–592 (2008).

    Google Scholar 

  57. J.D. Nowak, A.R. Beaber, O. Ugurlu, S.L. Girshick, and W.W. Gerberich, Scr. Mater. 62, 819–822 (2010).

    Google Scholar 

  58. A.H.W. Ngan, X.X. Chen, P.S.S. Leung, R. Gu, and K.F. Gan, MRS Commun. 7, 131–140 (2017).

    Google Scholar 

  59. T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, and D.R. Trinkle, Scr. Mater. 56, 313–316 (2007).

    Google Scholar 

  60. V. Samaee, R. Gatti, B. Devincre, T. Pardoen, D. Schryvers, and H. Idrissi, Sci. Rep. 8, 1–11 (2018).

    Google Scholar 

  61. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix, Science 305, 986–989 (2004).

    Google Scholar 

  62. C.A. Volkert and E.T. Lilleodden, Philos. Mag. 86, 5567–5579 (2006).

    Google Scholar 

  63. S.H. Oh, M. Legros, D. Kiener, and G. Dehm, Nat. Mater. 8, 95–100 (2009).

    Google Scholar 

  64. H. Tang, K.W. Schwarz, and H.D. Espinosa, Acta Mater. 55, 1607–1616 (2007).

    Google Scholar 

  65. W.D. Nix, J.R. Greer, G. Feng, and E.T. Lilleodden, Thin Solid Films 515, 3152–3157 (2007).

    Google Scholar 

  66. H. Liang, M. Upmanyu, and H. Huang, Phys. Rev. B 71, 241403 (2005).

    Google Scholar 

  67. F.F. Csikor, C. Motz, D. Weygand, M. Zaiser, and S. Zapperi, Science 318, 251–254 (2007).

    Google Scholar 

  68. W.D. Callister and D.G. Rethwisch, Materials Science and Engineering, 9th ed. (New York: Wiley, 2014).

    Google Scholar 

Download references

Acknowledgements

This research was sponsored by the National Science Foundation award DMR-17-52636 (PW) and the US Department of Energy Office of Nuclear Energy award DE-NE0008758 (GW). Portions of the microscopy effort were supported by the US DOE Office of Nuclear Energy under DOE Idaho Operations Office contract DE-AC07-05ID14517 as part of the Nuclear Science User Facilities experiment 19-1723. The authors also acknowledge Dr. Kayla Yano from Pacific Northwest National Laboratory for technical discussions and Matthew Besser at Ames Laboratory for assistance with alloy fabrication. Full TEM in situ video files and load-displacement data are permanently archived and accessible at doi:https://doi.org/10.4231/MQZZ-CN91.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Wharry.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warren, P.H., Warren, G., Dubey, M. et al. Method for Fabricating Depth-Specific TEM In Situ Tensile Bars. JOM 72, 2057–2064 (2020). https://doi.org/10.1007/s11837-020-04105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04105-8

Navigation